Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nat Commun ; 15(1): 3576, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678040

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.


Cryoelectron Microscopy , Maltose-Binding Proteins , Nucleocapsid , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Maltose-Binding Proteins/metabolism , Maltose-Binding Proteins/genetics , Virus Assembly , Capsid/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Nature ; 625(7994): 345-351, 2024 Jan.
Article En | MEDLINE | ID: mdl-38057661

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Frontotemporal Lobar Degeneration , TATA-Binding Protein Associated Factors , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Brain Stem/metabolism , Brain Stem/pathology , Cryoelectron Microscopy , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/ultrastructure , Temporal Lobe/metabolism , Temporal Lobe/pathology
3.
Proc Natl Acad Sci U S A ; 120(51): e2306767120, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38100415

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterized by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here, we used electron cryo-microscopy to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in three Kii cases and tau filaments with the corticobasal degeneration fold in one Kii case. We identified a new Type III CTE tau filament, where protofilaments pack against each other in an antiparallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.


Amyotrophic Lateral Sclerosis , Chronic Traumatic Encephalopathy , Dementia , Neurodegenerative Diseases , Parkinsonian Disorders , Tauopathies , Humans , Amyotrophic Lateral Sclerosis/complications , Dementia/etiology , Parkinsonian Disorders/complications , Japan , tau Proteins
4.
bioRxiv ; 2023 Apr 28.
Article En | MEDLINE | ID: mdl-37162924

The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterised by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in two Kii cases. We also identified a novel Type III CTE tau filament, where protofilaments pack against each other in an anti-parallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.

5.
Sci Adv ; 8(31): eabo0502, 2022 Aug 05.
Article En | MEDLINE | ID: mdl-35930644

Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.

6.
Chem Rev ; 122(9): 9145-9197, 2022 05 11.
Article En | MEDLINE | ID: mdl-35394752

Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.


Capsid , Materials Science , Capsid/chemistry , Capsid Proteins/chemistry , Catalysis , Protein Engineering
7.
Science ; 372(6547): 1220-1224, 2021 06 11.
Article En | MEDLINE | ID: mdl-34112695

Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.


Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Capsid/metabolism , Directed Molecular Evolution , RNA, Messenger/metabolism , Amino Acid Substitution , Aquifex/enzymology , Bacterial Proteins/chemistry , Capsid/chemistry , Cryoelectron Microscopy , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Nucleocapsid/chemistry , Nucleocapsid/genetics , Nucleocapsid/metabolism , Protein Domains , Protein Structure, Secondary , Protein Subunits , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribonucleases/metabolism
8.
Nat Commun ; 11(1): 5410, 2020 10 26.
Article En | MEDLINE | ID: mdl-33106476

Expanding protein design to include other molecular building blocks has the potential to increase structural complexity and practical utility. Nature often employs hybrid systems, such as clathrin-coated vesicles, lipid droplets, and lipoproteins, which combine biopolymers and lipids to transport a broader range of cargo molecules. To recapitulate the structure and function of such composite compartments, we devised a supramolecular strategy that enables porous protein cages to encapsulate poorly water-soluble small molecule cargo through templated formation of a hydrophobic surfactant-based core. These lipoprotein-like complexes protect their cargo from sequestration by serum proteins and enhance the cellular uptake of fluorescent probes and cytotoxic drugs. This design concept could be applied to other protein cages, surfactant mixtures, and cargo molecules to generate unique hybrid architectures and functional capabilities.


Drug Delivery Systems/instrumentation , Proteins/chemistry , Drug Compounding , Humans , Porosity
9.
Chem Sci ; 10(30): 7163-7171, 2019 Aug 14.
Article En | MEDLINE | ID: mdl-31588283

Native top-down mass spectrometry is emerging as a methodology that can be used to structurally investigate protein assemblies. To extend the possibilities of native top-down mass spectrometry to larger and more heterogeneous biomolecular assemblies, advances in both the mass analyzer and applied fragmentation techniques are still essential. Here, we explore ultraviolet photodissociation (UVPD) of protein assemblies on an Orbitrap with extended mass range, expanding its usage to large and heterogeneous macromolecular complexes, reaching masses above 1 million Da. We demonstrate that UVPD can lead not only to the ejection of intact subunits directly from such large intact complexes, but also to backbone fragmentation of these subunits, providing enough sequence information for subunit identification. The Orbitrap mass analyzer enables simultaneous monitoring of the precursor, the subunits, and the subunit fragments formed upon UVPD activation. While only partial sequence coverage of the subunits is observed, the UVPD data yields information about the localization of chromophores covalently attached to the subunits of the light harvesting complex B-phycoerythrin, extensive backbone fragmentation in a subunit of a CRISPR-Cas Csy (type I-F Cascade) complex, and sequence modifications in a virus-like proteinaceous nano-container. Through these multiple applications we demonstrate for the first time that UVPD based native top-down mass spectrometry is feasible for large and heterogeneous particles, including ribonucleoprotein complexes and MDa virus-like particles.

10.
Angew Chem Int Ed Engl ; 56(47): 14933-14936, 2017 11 20.
Article En | MEDLINE | ID: mdl-28902449

Ferritins, conserved across all kingdoms of life, are protein nanocages that evolved to mineralize iron. The last several decades have shown that these cages have considerable technological and medical potential owing to their stability and tolerance to modification, as well as their ability to template nanoparticle synthesis and incorporate small molecules. Here we show that it is possible to encapsulate proteins in a ferritin cage by exploiting electrostatic interactions with its negatively charged interior. Positively supercharged green fluorescent protein is efficiently taken up by Archaeoglobus fulgidus ferritin in a tunable fashion. Moreover, several enzymes were readily incorporated when genetically tethered to this fluorescent protein. These fusion proteins retained high catalytic activity and showed increased tolerance to proteolysis and heat. Equipping ferritins with enzymatic activity paves the way for many new nanotechnological and pharmacological applications.

11.
Angew Chem Int Ed Engl ; 54(3): 937-40, 2015 Jan 12.
Article En | MEDLINE | ID: mdl-25392947

Designing nanoscaled hierarchical structures with increasing levels of complexity is challenging. Here we show that electrostatic interactions between two complementarily supercharged protein nanocages can be effectively utilized to create nested Matryoshka-type structures. Cage-within-cage complexes containing spatially ordered iron oxide nanoparticles spontaneously self-assemble upon mixing positively supercharged ferritin compartments with AaLS-13, a larger shell-forming protein with a negatively supercharged lumen. Exploiting engineered Coulombic interactions and protein dynamics in this way opens up new avenues for creating hierarchically organized supramolecular assemblies for application as delivery vehicles, reaction chambers, and artificial organelles.


Ferritins/chemistry , Metal Nanoparticles/chemistry , Aquifoliaceae/enzymology , Ferric Compounds/chemistry , Ferritins/genetics , Ferritins/metabolism , Humans , Microscopy, Electron, Transmission , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Protein Engineering , Protein Structure, Tertiary , Static Electricity
...