Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Article En | MEDLINE | ID: mdl-38216750

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

2.
Rheumatology (Oxford) ; 63(4): 1180-1188, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-37341635

OBJECTIVES: OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS: Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS: Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION: Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.


Osteoarthritis , Synovitis , Humans , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3 , Osteoarthritis/metabolism , Synovitis/pathology , Calgranulin B/metabolism , Synovial Membrane/metabolism
...