Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 13(1): 152, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149657

RESUMEN

Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Masculino , Ratones , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Endocannabinoides/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transducción de Señal
2.
Prog Neurobiol ; 217: 102333, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35872219

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas Serotoninérgicas , Animales , Antidepresivos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas Serotoninérgicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...