Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 934381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991182

RESUMEN

Heat stress (HS) compromises the yield and quality of poultry products and endangers the sustainability of the poultry industry. Despite being homeothermic, chickens, especially fast-growing broiler lines, are particularly sensitive to HS due to the phylogenetic absence of sweat glands, along with the artificial selection-caused increase in metabolic rates and limited development of cardiovascular and respiratory systems. Clinical signs and consequences of HS are multifaceted and include alterations in behavior (e.g., lethargy, decreased feed intake, and panting), metabolism (e.g., catabolic state, fat accumulation, and reduced skeletal muscle accretion), general homeostasis (e.g., alkalosis, hormonal imbalance, immunodeficiency, inflammation, and oxidative stress), and gastrointestinal tract function (e.g., digestive and absorptive disorders, enteritis, paracellular barrier failure, and dysbiosis). Poultry scientists and companies have made great efforts to develop effective solutions to counteract the detrimental effects of HS on health and performance of chickens. Feeding and nutrition have been shown to play a key role in combating HS in chicken husbandry. Nutritional strategies that enhance protein and energy utilization as well as dietary interventions intended to restore intestinal eubiosis are of increasing interest because of the marked effects of HS on feed intake, nutrient metabolism, and gut health. Hence, the present review series, divided into Part I and Part II, seeks to synthesize information on the effects of HS on physiology, gut health, and performance of chickens, with emphasis on potential solutions adopted in broiler chicken nutrition to alleviate these effects. Part I provides introductory knowledge on HS physiology to make good use of the nutritional themes covered by Part II.

2.
Front Physiol ; 13: 943612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003648

RESUMEN

With the growing global demand for animal protein and rising temperatures caused by climate change, heat stress (HS) is one of the main emerging environmental challenges for the poultry industry. Commercially-reared birds are particularly sensitive to hot temperatures, so adopting production systems that mitigate the adverse effects of HS on bird performance is essential and requires a holistic approach. Feeding and nutrition can play important roles in limiting the heat load on birds; therefore, this review aims to describe the effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding strategies and nutritional solutions to potentially mitigate some of the deleterious effects of HS on broiler chickens. The reduction of FI is one of the main behavioral changes induced by hot temperatures as birds attempt to limit heat production associated with the digestion, absorption, and metabolism of nutrients. Although the intensity and length of the heat period influences the type and magnitude of responses, reduced FI explains most of the performance degradation observed in HS broilers, while reduced nutrient digestibility appears to only explain a small proportion of impaired feed efficiency following HS. Targeted feeding strategies, including feed restriction and withdrawal, dual feeding, and wet feeding, have showed some promising results under hot temperatures, but these can be difficult to implement in intensive rearing systems. Concerning diet composition, feeding increased nutrient and energy diets can potentially compensate for decreased FI during HS. Indeed, high energy and high crude protein diets have both been shown to improve bird performance under HS conditions. Specifically, positive results may be obtained with increased added fat concentrations since lipids have a lower thermogenic effect compared to proteins and carbohydrates. Moreover, increased supplementation of some essential amino acids can help support increased amino acid requirements for maintenance functions caused by HS. Further research to better characterize and advance these nutritional strategies will help establish economically viable solutions to enhance productivity, health, welfare, and meat quality of broilers facing HS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...