Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(44): eadh9603, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922363

RESUMEN

Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.


Asunto(s)
Interferón Tipo I , Nociceptores , Ratones , Animales , Nociceptores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Interferón Tipo I/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37473758

RESUMEN

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Animales , Ratones , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Fenotipo , Ratones Noqueados , Modelos Animales de Enfermedad
3.
J Clin Invest ; 133(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394958

RESUMEN

Repeated or prolonged, but not short-term, general anesthesia during the early postnatal period causes long-lasting impairments in memory formation in various species. The mechanisms underlying long-lasting impairment in cognitive function are poorly understood. Here, we show that repeated general anesthesia in postnatal mice induces preferential apoptosis and subsequent loss of parvalbumin-positive inhibitory interneurons in the hippocampus. Each parvalbumin interneuron controls the activity of multiple pyramidal excitatory neurons, thereby regulating neuronal circuits and memory consolidation. Preventing the loss of parvalbumin neurons by deleting a proapoptotic protein, mitochondrial anchored protein ligase (MAPL), selectively in parvalbumin neurons rescued anesthesia-induced deficits in pyramidal cell inhibition and hippocampus-dependent long-term memory. Conversely, partial depletion of parvalbumin neurons in neonates was sufficient to engender long-lasting memory impairment. Thus, loss of parvalbumin interneurons in postnatal mice following repeated general anesthesia critically contributes to memory deficits in adulthood.


Asunto(s)
Anestesia , Parvalbúminas , Ratones , Animales , Parvalbúminas/genética , Parvalbúminas/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
4.
J Neurosci ; 40(16): 3203-3216, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32209609

RESUMEN

Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood.SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Neuronas Dopaminérgicas/fisiología , Lactancia/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
5.
Elife ; 82019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31841107

RESUMEN

How mammalian neural circuits generate rhythmic activity in motor behaviors, such as breathing, walking, and chewing, remains elusive. For breathing, rhythm generation is localized to a brainstem nucleus, the preBötzinger Complex (preBötC). Rhythmic preBötC population activity consists of strong inspiratory bursts, which drive motoneuronal activity, and weaker burstlets, which we hypothesize reflect an emergent rhythmogenic process. If burstlets underlie inspiratory rhythmogenesis, respiratory depressants, such as opioids, should reduce burstlet frequency. Indeed, in medullary slices from neonatal mice, the µ-opioid receptor (µOR) agonist DAMGO slowed burstlet generation. Genetic deletion of µORs in a glutamatergic preBötC subpopulation abolished opioid-mediated depression, and the neuropeptide Substance P, but not blockade of inhibitory synaptic transmission, reduced opioidergic effects. We conclude that inspiratory rhythmogenesis is an emergent process, modulated by opioids, that does not rely on strong bursts of activity associated with motor output. These findings also point to strategies for ameliorating opioid-induced depression of breathing.


Asunto(s)
Analgésicos Opioides/farmacología , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Respiración/efectos de los fármacos , Centro Respiratorio/fisiología , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/agonistas , Proteínas de Homeodominio , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/fisiología , Receptores Opioides mu , Centro Respiratorio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
6.
PLoS One ; 10(7): e0133136, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26197458

RESUMEN

Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion.


Asunto(s)
Ácidos Araquidónicos/química , Endocannabinoides/química , Lampreas/fisiología , Neuronas/metabolismo , Alcamidas Poliinsaturadas/química , Canales de Potasio/metabolismo , Médula Espinal/metabolismo , Sustancia P/fisiología , Potenciales de Acción/fisiología , Animales , Canales de Calcio/metabolismo , Electrofisiología , Interneuronas/fisiología , Locomoción/fisiología , Potenciales de la Membrana , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Transducción de Señal , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
J Neurophysiol ; 102(3): 1358-65, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19571197

RESUMEN

The spinal network underlying locomotion in lamprey is composed of excitatory and inhibitory interneurons mediating fast ionotropic action. In addition, several modulator systems are activated as locomotion is initiated, including the tachykinin system and the metabotropic glutamate receptor 1 (mGluR1), the latter operating partially via the endocannabinoid system. The effects of mGluR1 agonists and tachykinins resemble each other. Like mGluR1 agonists, the tachykinin substance P accelerates the burst rate and reduces the crossed inhibition in an activity-dependent fashion. The present study therefore explores whether tachykinins also use the endocannabinoid system to modulate the locomotor frequency. By monitoring fictive locomotion, we were able to compare the facilitatory effects exerted by applying substance P (1 microM, 20 min), on the burst frequency before and during application of the endocannabinoid CB1 receptor antagonist AM251 (2-5 microM). By using two different lamprey species, we showed that the response to substance P on the burst frequency is significantly reduced during the application of AM251. To examine whether endocannabinoids are involved in the substance P-mediated modulation of reciprocal inhibition, the commissural axons were stimulated, while recording intracellularly from motoneurons. We compare the effect of substance P on the amplitude of the contralateral compound glycinergic inhibitory postsynaptic potential (IPSP) in control and in the presence of AM251. The blockade of CB1 receptors reduced the substance P-mediated decrease in the amplitude by 29%. The present findings suggest that the effects of substance P on the increase in the locomotor burst frequency and depression of IPSPs are mediated partially via release of endocannabinoids acting through CB1 receptors.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Locomoción/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Neurotransmisores/farmacología , Taquicininas/farmacología , Potenciales de Acción/efectos de los fármacos , Analgésicos/farmacología , Animales , Benzoxazinas/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Lampreas/anatomía & histología , Lampreas/fisiología , Modelos Biológicos , Morfolinas/farmacología , N-Metilaspartato/farmacología , Naftalenos/farmacología , Red Nerviosa/efectos de los fármacos , Vías Nerviosas/fisiología , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Médula Espinal/citología , Sustancia P/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...