Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Med Chem ; 67(2): 952-970, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38170624

A number of RORγ inhibitors have been reported over the past decade. There were also several examples advancing to human clinical trials, however, none of them has reached the market yet, suggesting that there could be common obstacles for their future development. As was expected from the general homology of nuclear receptor ligands, insufficient selectivity as well as poor physicochemical properties were identified as potential risks for a RORγ program. Based on such considerations, we conducted a SAR investigation by prioritizing drug-like properties to mitigate such potential drawbacks. After an intensive SAR exploration with strong emphasis on "drug-likeness" indices, an orally available RORγ inhibitor, JTE-151, was finally generated and was advanced to a human clinical trial. The compound was confirmed to possess highly selective profiles along with good metabolic stability, and most beneficially, no serious adverse events (SAE) and good PK profiles were observed in the human clinical trial.

2.
J Med Chem ; 62(5): 2837-2842, 2019 03 14.
Article En | MEDLINE | ID: mdl-30776227

Starting from a previously reported RORγ inhibitor (1), successive efforts to improve in vivo potency were continued. Introduction of metabolically beneficial motifs in conjunction with scaffold hopping was examined, resulting in discovery of the second generation RORγ inhibitor composed of a 4-(isoxazol-3-yl)butanoic acid scaffold (24). Compound 24 achieved a 10-fold improvement in in vivo potency in a mouse CD3 challenge model along with significant anti-inflammatory effects in a mouse dermatitis model.


Azoles/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Animals , Azoles/chemistry , Dermatitis/drug therapy , Disease Models, Animal , Drug Discovery , Mice , Molecular Docking Simulation , Structure-Activity Relationship
3.
Sci Rep ; 8(1): 17374, 2018 11 26.
Article En | MEDLINE | ID: mdl-30478402

Retinoic acid-related orphan receptor gamma (RORγ) plays pivotal roles in autoimmune diseases by controlling the lineage of interleukin 17 (IL-17)-producing CD4+ T cells (Th17 cells). Structure-based drug design has proven fruitful in the development of inhibitors targeting the ligand binding domain (LBD) of RORγ. Here, we present the crystal structure of a novel RORγ inhibitor co-complex, in the presence of a corepressor (CoR) peptide. This ternary complex with compound T reveals the structural basis for an inhibitory mechanism different from the previously reported inverse agonist. Compared to the inverse agonist, compound T induces about 2 Šshift of helix 5 (H5) backbone and side-chain conformational changes of Met365 on H5. These conformational changes correlate to reduced CoR peptide binding to RORγ-LBD in the presence of compound T, which suggests that the shift of H5 is responsible. This crystal structure analysis will provide useful information for the development of novel and efficacious drugs for autoimmune disorders.


Co-Repressor Proteins/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Domains/physiology , Autoimmune Diseases/metabolism , Humans , Interleukin-17/metabolism , Peptides/metabolism , Protein Binding , Structure-Activity Relationship , Th17 Cells/metabolism
4.
Genes Cells ; 22(6): 535-551, 2017 Jun.
Article En | MEDLINE | ID: mdl-28493531

Retinoid-related orphan receptor gamma (RORγ) directly controls the differentiation of Th17 cell and the production of interleukin-17, which plays an integral role in autoimmune diseases. To obtain insight into RORγ, we have determined the first crystal structure of a ternary complex containing RORγ ligand-binding domain (LBD) bound with a novel synthetic inhibitor and a repressor peptide, 22-mer peptide from silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Comparison of a binary complex of nonliganded (apo) RORγ-LBD with a nuclear receptor co-activator (NCoA-1) peptide has shown that our inhibitor displays a unique mechanism different from those caused by natural inhibitor, ursolic acid (UA). The compound unprecedentedly induces indirect disruption of a hydrogen bond between His479 on helix 11 (H11) and Tyr502 on H12, which is crucial for active conformation. This crystallographic study will allow us to develop novel synthetic compounds for autoimmune disease therapy.


Nuclear Receptor Co-Repressor 2/metabolism , Nuclear Receptor Coactivator 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Binding Sites , Humans , Hydrogen Bonding , Models, Molecular , Mutation , Nuclear Receptor Co-Repressor 2/agonists , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Coactivator 1/chemistry , Nuclear Receptor Coactivator 1/genetics , Peptide Fragments , Protein Binding , Protein Conformation , Triterpenes/pharmacology , Ursolic Acid
5.
ACS Med Chem Lett ; 7(1): 23-7, 2016 Jan 14.
Article En | MEDLINE | ID: mdl-26819660

A novel series of RORγ inhibitors was identified starting with the HTS hit 1. After SAR investigation based on a prospective consideration of two drug-likeness metrics, ligand efficiency (LE) and fraction of sp(3) carbon atoms (Fsp(3)), significant improvement of metabolic stability as well as reduction of CYP inhibition was observed, which finally led to discovery of a selective and orally efficacious RORγ inhibitor 3z.

6.
Mol Pharmacol ; 73(6): 1776-84, 2008 Jun.
Article En | MEDLINE | ID: mdl-18334597

The steroidogenic factor 1 (SF-1, also known as NR5A1) is a transcription factor belonging to the nuclear receptor superfamily. Whereas most of the members of this family have been extensively characterized, the therapeutic potential and pharmacology of SF-1 still remains elusive. Described here is the identification and characterization of selective inhibitory chemical probes of SF-1 by a rational ultra-high-throughput screening (uHTS) strategy. A set of 64,908 compounds from the National Institute of Health's Molecular Libraries Small Molecule Repository was screened in a transactivation cell-based assay employing a chimeric SF-1 construct. Two analogous isoquinolinones, ethyl 2-[2-[2-(2,3-dihydro-1,4-benzodioxin-7-ylamino)-2-oxoethyl]-1-oxoisoquinolin-5-yl]oxypropanoate (SID7969543) and ethyl 2-[2-[2-(1,3-benzodioxol-5-ylmethylamino)-2-oxoethyl]-1-oxoisoquinolin-5-yl]oxypropanoate and (SID7970631), were identified as potent submicromolar inhibitors, yielding IC(50) values of 760 and 260 nM. The compounds retained their potency in a more physiologic functional assay employing the full-length SF-1 protein and its native response element, yielding IC(50) values of 30 and 16 nM, respectively. The selectivity of these isoquinolinones was confirmed via transactivation-based functional assays for RAR-related orphan receptor A (RORA), Herpes simplex virus transcriptional activator protein Vmw65 (VP16), and liver receptor homolog 1 (LRH-1). Their cytotoxicity, solubility, permeability and metabolic stability were also measured. These isoquinolinones represent valuable chemical probes to investigate the therapeutic potential of SF-1.


Small Molecule Libraries/pharmacology , Steroidogenic Factor 1/antagonists & inhibitors , Steroidogenic Factor 1/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Haplorhini , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Mice , Rats , Small Molecule Libraries/chemistry
...