Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Crit Care Explor ; 6(5): e1084, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709083

OBJECTIVES: Acute kidney injury requiring dialysis (AKI-D) commonly occurs in the setting of multiple organ dysfunction syndrome (MODS). Continuous renal replacement therapy (CRRT) is the modality of choice for AKI-D. Mid-term outcomes of pediatric AKI-D supported with CRRT are unknown. We aimed to describe the pattern and impact of organ dysfunction on renal outcomes in critically ill children and young adults with AKI-D. DESIGN: Retrospective cohort. SETTING: Two large quarternary care pediatric hospitals. PATIENTS: Patients 26 y old or younger who received CRRT from 2014 to 2020, excluding patients with chronic kidney disease. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Organ dysfunction was assessed using the Pediatric Logistic Organ Dysfunction-2 (PELOD-2) score. MODS was defined as greater than or equal to two organ dysfunctions. The primary outcome was major adverse kidney events at 30 days (MAKE30) (decrease in estimated glomerular filtration rate greater than or equal to 25% from baseline, need for renal replacement therapy, and death). Three hundred seventy-three patients, 50% female, with a median age of 84 mo (interquartile range [IQR] 16-172) were analyzed. PELOD-2 increased from 6 (IQR 3-9) to 9 (IQR 7-12) between ICU admission and CRRT initiation. Ninety-seven percent of patients developed MODS at CRRT start and 266 patients (71%) had MAKE30. Acute kidney injury (adjusted odds ratio [aOR] 3.55 [IQR 2.13-5.90]), neurologic (aOR 2.07 [IQR 1.15-3.74]), hematologic/oncologic dysfunction (aOR 2.27 [IQR 1.32-3.91]) at CRRT start, and progressive MODS (aOR 1.11 [IQR 1.03-1.19]) were independently associated with MAKE30. CONCLUSIONS: Ninety percent of critically ill children and young adults with AKI-D develop MODS by the start of CRRT. Lack of renal recovery is associated with specific extrarenal organ dysfunction and progressive multiple organ dysfunction. Currently available extrarenal organ support strategies, such as therapeutic plasma exchange lung-protective ventilation, and other modifiable risk factors, should be incorporated into clinical trial design when investigating renal recovery.


Acute Kidney Injury , Continuous Renal Replacement Therapy , Critical Illness , Multiple Organ Failure , Humans , Female , Male , Multiple Organ Failure/therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Critical Illness/therapy , Retrospective Studies , Child , Continuous Renal Replacement Therapy/methods , Adolescent , Acute Kidney Injury/therapy , Acute Kidney Injury/physiopathology , Child, Preschool , Young Adult , Infant , Organ Dysfunction Scores , Cohort Studies , Adult , Renal Replacement Therapy/methods
3.
Clin Transplant ; 38(4): e15306, 2024 04.
Article En | MEDLINE | ID: mdl-38616573

BACKGROUND: Intraoperative Continuous Renal Replacement Therapy (iCRRT) can prevent life-threatening complications, facilitate fluid management, and maintain metabolic homeostasis during liver transplantation (LT) in adults. There is a paucity of data in pediatric LT. We evaluated the safety, efficacy, and impact on survival of iCRRT in pediatric LT. METHODS: We conducted a retrospective cohort study of all children requiring CRRT pre-OLT at a quaternary children's hospital from 2014 to 2022. Demographic characteristics, intraoperative events, and post-LT outcomes were compared between those who received iCRRT and those who did not. RESULTS: Out of 306 patients who received LT, 30 (10%) were supported with CRRT at least 24 h prior to LT, of which 11 (36%) received iCRRT. The two cohorts were similar in demographics, diagnosis of liver disease, and severity of illness. The iCRRT patients experienced massive blood loss and increased transfusion requirements. There was no difference in intraoperative metabolic balance. One-year post-LT mortality rates were similar. CONCLUSION: ICRRT is safe in critically ill children with pre-LT renal dysfunction. It optimizes fluid and blood product resuscitation while maintaining metabolic homeostasis. Candidates need to be carefully chosen for this highly resource-intensive therapy to benefit this fragile population.


Continuous Renal Replacement Therapy , Liver Transplantation , Adult , Humans , Child , Liver Transplantation/adverse effects , Retrospective Studies , Renal Replacement Therapy
4.
JAMA Netw Open ; 7(1): e2349871, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165673

Importance: In clinical trials, the early or accelerated continuous renal replacement therapy (CRRT) initiation strategy among adults with acute kidney injury or volume overload has not demonstrated a survival benefit. Whether the timing of initiation of CRRT is associated with outcomes among children and young adults is unknown. Objective: To determine whether timing of CRRT initiation, with and without consideration of volume overload (VO; <10% vs ≥10%), is associated with major adverse kidney events at 90 days (MAKE-90). Design, Setting, and Participants: This multinational retrospective cohort study was conducted using data from the Worldwide Exploration of Renal Replacement Outcome Collaborative in Kidney Disease (WE-ROCK) registry from 2015 to 2021. Participants included children and young adults (birth to 25 years) receiving CRRT for acute kidney injury or VO at 32 centers across 7 countries. Statistical analysis was performed from February to July 2023. Exposure: The primary exposure was time to CRRT initiation from intensive care unit admission. Main Outcomes and measures: The primary outcome was MAKE-90 (death, dialysis dependence, or persistent kidney dysfunction [>25% decline in estimated glomerular filtration rate from baseline]). Results: Data from 996 patients were entered into the registry. After exclusions (n = 27), 969 patients (440 [45.4%] female; 16 (1.9%) American Indian or Alaska Native, 40 (4.7%) Asian or Pacific Islander, 127 (14.9%) Black, 652 (76.4%) White, 18 (2.1%) more than 1 race; median [IQR] patient age, 8.8 [1.7-15.0] years) with data for the primary outcome (MAKE-90) were included. Median (IQR) time to CRRT initiation was 2 (1-6) days. MAKE-90 occurred in 630 patients (65.0%), of which 368 (58.4%) died. Among the 601 patients who survived, 262 (43.6%) had persistent kidney dysfunction. Of patients with persistent dysfunction, 91 (34.7%) were dependent on dialysis. Time to CRRT initiation was approximately 1 day longer among those with MAKE-90 (median [IQR], 3 [1-8] days vs 2 [1-4] days; P = .002). In the generalized propensity score-weighted regression, there were approximately 3% higher odds of MAKE-90 for each 1-day delay in CRRT initiation (odds ratio, 1.03 [95% CI, 1.02-1.04]). Conclusions and Relevance: In this cohort study of children and young adults receiving CRRT, longer time to CRRT initiation was associated with greater risk of MAKE-90 outcomes, in particular, mortality. These findings suggest that prospective multicenter studies are needed to further delineate the appropriate time to initiate CRRT and the interaction between CRRT initiation timing and VO to continue to improve survival and reduce morbidity in this population.


Acute Kidney Injury , Continuous Renal Replacement Therapy , Child , Humans , Female , Young Adult , Male , Renal Dialysis , Renal Replacement Therapy , Cohort Studies , Retrospective Studies , Prospective Studies , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Kidney
5.
Crit Care Explor ; 5(4): e0891, 2023 Apr.
Article En | MEDLINE | ID: mdl-37066071

Therapeutic plasma exchange (TPE) has been shown to improve organ dysfunction and survival in patients with thrombotic microangiopathy and thrombocytopenia associated with multiple organ failure. There are no known therapies for the prevention of major adverse kidney events after continuous kidney replacement therapy (CKRT). The primary objective of this study was to evaluate the effect of TPE on the rate of adverse kidney events in children and young adults with thrombocytopenia at the time of CKRT initiation. DESIGN: Retrospective cohort. SETTING: Two large quaternary care pediatric hospitals. PATIENTS: All patients less than or equal to 26 years old who received CKRT between 2014 and 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We defined thrombocytopenia as a platelet count less than or equal to 100,000 (cell/mm3) at the time of CKRT initiation. We ascertained major adverse kidney events at 90 days (MAKE90) after CKRT initiation as the composite of death, need for kidney replacement therapy, or a greater than or equal to 25% decline in estimated glomerular filtration rate from baseline. We performed multivariable logistic regression and propensity score weighting to analyze the relationship between the use of TPE and MAKE90. After excluding patients with a diagnosis of thrombotic thrombocytopenia purpura and atypical hemolytic uremic syndrome (n = 6) and with thrombocytopenia due to a chronic illness (n = 2), 284 of 413 total patients (68.8%) had thrombocytopenia at CKRT initiation (51% female). Of the patients with thrombocytopenia, the median (interquartile range) age was 69 months (13-128 mo). MAKE90 occurred in 69.0% and 41.5% received TPE. The use of TPE was independently associated with reduced MAKE90 by multivariable analysis (odds ratio [OR], 0.35; 95% CI, 0.20-0.60) and by propensity score weighting (adjusted OR, 0.31; 95% CI, 0.16-0.59). CONCLUSIONS: Thrombocytopenia is common in children and young adults at CKRT initiation and is associated with increased MAKE90. In this subset of patients, our data show benefit of TPE in reducing the rate of MAKE90.

6.
Crit Care Med ; 51(6): 765-774, 2023 06 01.
Article En | MEDLINE | ID: mdl-36939256

OBJECTIVES: Given the complex interrelatedness of fluid overload (FO), creatinine, acute kidney injury (AKI), and clinical outcomes, the association of AKI with poor outcomes in critically ill children may be underestimated due to definitions used. We aimed to disentangle these temporal relationships in a large cohort of children with acute respiratory distress syndrome (ARDS). DESIGN: Retrospective cohort study. SETTING: Quaternary care PICU. PATIENTS: Seven hundred twenty intubated children with ARDS between 2011 and 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Daily fluid balance, urine output (UOP), and creatinine for days 1-7 of ARDS were retrospectively abstracted. A subset of patients had angiopoietin 2 (ANGPT2) quantified on days 1, 3, and 7. Patients were classified as AKI by Kidney Disease Improving Global Outcomes (KDIGO) stage 2/3 then grouped by timing of AKI onset (early if days 1-3 of ARDS, late if days 4-7 of ARDS, persistent if both) for comparison of PICU mortality and ventilator-free days (VFDs). A final category of "Cryptic AKI" was used to identify subjects who met KDIGO stage 2/3 criteria only when creatinine was adjusted for FO. Outcomes were compared between those who had Cryptic AKI identified by FO-adjusted creatinine versus those who had no AKI. Conventionally defined AKI occurred in 26% of patients (early 10%, late 3%, persistent 13%). AKI was associated with higher mortality and fewer VFDs, with no differences according to timing of onset. The Cryptic AKI group (6% of those labeled no AKI) had higher mortality and fewer VFDs than patients who did not meet AKI with FO-adjusted creatinine. FO, FO-adjusted creatinine, and ANGPT2 increased 1 day prior to meeting AKI criteria in the late AKI group. CONCLUSIONS: AKI was associated with higher mortality and fewer VFDs in pediatric ARDS, irrespective of timing. FO-adjusted creatinine captures a group of patients with Cryptic AKI with outcomes approaching those who meet AKI by traditional criteria. Increases in FO, FO-adjusted creatinine, and ANGPT2 occur prior to meeting conventional AKI criteria.


Acute Kidney Injury , Respiratory Distress Syndrome , Water-Electrolyte Imbalance , Humans , Child , Retrospective Studies , Creatinine , Masks , Acute Kidney Injury/therapy , Respiratory Distress Syndrome/therapy , Kidney
7.
Pediatr Nephrol ; 37(9): 2167-2177, 2022 09.
Article En | MEDLINE | ID: mdl-35118547

BACKGROUND: Emerging data suggest evidence of organ hypoperfusion during continuous kidney replacement therapy (CKRT). To facilitate kidney and global recovery, we must understand the hemodynamic risks associated with CKRT. We aimed to investigate frequency of hemodynamic instability and association with patient outcomes in pediatric CKRT. METHODS: In a single-center study of CKRT patients between September 2016 and October 2018, we collected hemodynamic data using archived high-resolution physiologic data before and after connection. Primary outcome was hypotension defined as ≥ 20% decrease in baseline mean arterial pressure (MAP) for ≥ 2 consecutive minutes in the 60 min following connection. Secondary outcomes were tachycardia (≥ 20% increase in heart rate (HR)) and hemodynamic interventions. RESULTS: Seventy-one patients median age 54 months (IQR 7-144), weight 16.7 kg (IQR 8-41), on hemodiafiltration had 304 filter connections, 4 (IQR 1-7) filters per patient; the median duration of CKRT was 9 days (IQR 3-20). The most common CKRT indication was AKI with fluid overload (48/71, 69%). There were 78 (27%) hypotension and 42 (14%) tachycardia events; cumulative duration of hypotension was 14 min IQR (3-31.75). Teams provided intervention in 17/304 (6%) of connections. Pediatric Logistic Organ Dysfunction 2 was the only independent predictor of hypotension (aOR 2.12 (CI 1.02-4.41)). CONCLUSIONS: One in four and one in six pediatric CKRT filter connections were complicated by hypotension and tachycardia, respectively. Higher illness severity at CKRT initiation was independently associated with hypotension. Impact of CKRT-associated hemodynamic instability on global patient outcomes requires further targeted study. A higher resolution version of the Graphical abstract is available as Supplementary information.


Acute Kidney Injury , Continuous Renal Replacement Therapy , Hypotension , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Child , Child, Preschool , Continuous Renal Replacement Therapy/adverse effects , Critical Illness/therapy , Hemodynamics/physiology , Humans , Hypotension/epidemiology , Hypotension/etiology
8.
Front Pediatr ; 9: 744110, 2021.
Article En | MEDLINE | ID: mdl-34733809

Acute Kidney Injury (AKI) is an independent risk factor for mortality in hospitalized patients. AKI syndrome leads to fluid overload, electrolyte and acid-base disturbances, immunoparalysis, and propagates multiple organ dysfunction through organ "crosstalk". Preclinical models suggest AKI causes acute lung injury (ALI), and conversely, mechanical ventilation and ALI cause AKI. In the clinical setting, respiratory complications are a key driver of increased mortality in patients with AKI, highlighting the bidirectional relationship. This article highlights the challenging and complex interactions between the lung and kidney in critically ill patients with AKI and acute respiratory distress syndrome (ARDS) and global implications of AKI. We discuss disease-specific molecular mediators and inflammatory pathways involved in organ crosstalk in the AKI-ARDS construct, and highlight the reciprocal hemodynamic effects of elevated pulmonary vascular resistance and central venous pressure (CVP) leading to renal hypoperfusion and pulmonary edema associated with fluid overload and increased right ventricular afterload. Finally, we discuss the notion of different ARDS "phenotypes" and the response to fluid overload, suggesting differential organ crosstalk in specific pathological states. While the directionality of effect remains challenging to distinguish at the bedside due to lag in diagnosis with conventional renal function markers and lack of tangible damage markers, this review provides a paradigm for understanding kidney-lung interactions in the critically ill patient.

...