Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Addiction ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259037

RESUMEN

BACKGROUND AND AIMS: Between 2018 and 2020, Australia implemented major policy changes to improve the quality and safety of opioid prescribing, with a specific focus on oxycodone. This study used wastewater-based epidemiology to assess the efficacy of Australia's regulatory reforms by measuring change in consumption of oxycodone via exploratory analysis. DESIGN, SETTING, PARTICIPANTS, MEASUREMENTS: Wastewater analysis data on oxycodone consumption was from the National Wastewater Drug Monitoring Program. The program captures data from more than 50 wastewater treatment plant catchments across Australia, equivalent to more than 50% of the national population. Geographic trend analyses were conducted for both major cities and regional areas within all states and territories of Australia over a 6-year period between 2017 and 2023. FINDINGS: Oxycodone consumption showed a statistically significant increase nationally from 78 mg/day/1000 people (95% confidence interval [CI] = 71, 84) in 2017 to 120 mg/day/1000 people in August 2019 (95% CI = 110, 120), an increase of 52% (95% CI = 42, 62, P < 0.0001). From August 2019 to December 2020, there was a statistically significant decrease from 120 to 65 mg/day/1000 people (95% CI = 60, 71), a decrease of 45% (95% CI = 40, 51), followed by a modest 2.4% increase to the end of the study period in April 2023 (95% CI [2.0,2.7]). CONCLUSIONS: A 45% reduction in oxycodone consumption in Australia from 2019 to 2020 coincided with national policy changes that aimed to reduce consumption of prescription opioids. The overall declining trend in consumption was suggestive of the effectiveness of national interventions in reducing pharmaceutical opioid use. Wastewater-based epidemiology provides an effective approach for assessing the effectiveness of controlled substances policy changes.

2.
Beilstein J Org Chem ; 20: 2305-2312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290207

RESUMEN

Iminoiodinanes comprise a class of hypervalent iodine reagents that is often encountered in nitrogen-group transfer (NGT) catalysis. In general, transition metal catalysts are required to effect efficient NGT to unactivated olefins because iminoiodinanes are insufficiently electrophilic to engage in direct aziridination chemistry. Here, we demonstrate that 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) activates N-arylsulfonamide-derived iminoiodinanes for the metal-free aziridination of unactivated olefins. 1H NMR and cyclic voltammetry (CV) studies indicate that hydrogen-bonding between HFIP and the iminoiodinane generates an oxidant capable of direct NGT to unactivated olefins. Stereochemical scrambling during aziridination of 1,2-disubstituted olefins is observed and interpreted as evidence that aziridination proceeds via a carbocation intermediate that subsequently cyclizes. These results demonstrate a simple method for activating iminoiodinane reagents, provide analysis of the extent of activation achieved by H-bonding, and indicate the potential for chemical non-innocence of fluorinated alcohol solvents in NGT catalysis.

3.
Water Res ; 263: 122210, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106621

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO4•- and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Sedimentos Geológicos/química , Peróxidos/química , Animales , Microbiota , Quinonas/química , Oxidación-Reducción
4.
Drug Alcohol Rev ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39176456

RESUMEN

INTRODUCTION: On 1 January 2020, Vietnam introduced a new law with harsher fines and penalties for driving under the influence of alcohol. Reports of empty beer restaurants following this implementation suggested the new law has the potential to reduce population-level alcohol consumption. This pilot study aims to quantify short-term changes in alcohol consumption levels after the implementation of the new law and assess whether it could lead to a reduction in total alcohol consumption in the population. METHODS: Wastewater samples were collected from two sites along a sewage canal in Hanoi during two periods: Period 1 (15 December 2018 to 14 January 2019) and Period 2 (15 December 2019 to 14 January 2020). Ethyl sulfate, a specific metabolite of alcohol, was quantified to monitor the trend of alcohol consumption. Both interrupted time series and controlled interrupted time series approaches were utilised, with Period 1 and Period 2 serving as the control and intervention periods, respectively. RESULTS: Our analysis indicated that the implementation of the new law did not result in an immediate and significant reduction in alcohol consumption at the population level. Meanwhile, there was no significant difference in alcohol consumption between weekdays and weekends both before and after the implementation of the new law. DISCUSSION AND CONCLUSIONS: Long-term monitoring is needed to assess the impact of stricter DUI policy on alcohol consumption in the urban areas of Vietnam.

5.
J Hazard Mater ; 476: 135130, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991639

RESUMEN

During the COVID-19 pandemic, one of Australia's biggest cities, Melbourne, experienced three major isolation ("lockdown") periods in 2020 (160 days) and in 2021 (111 days) which makes it one of the most locked down cities world-wide. This study assessed how the pandemic affected temporal trends in methamphetamine, MDMA and cocaine consumption using wastewater-based epidemiology. Daily samples were collected for most of 2020 and 2021 (n = 660 days). Concentrations were measured using direct-injection LC-MS/MS and back-calculated to consumption estimates. Results indicate that methamphetamine use was increasing before the first lockdown and decreased after the end of the first lockdown in 2020. Methamphetamine trends appeared to have remained steady throughout the second lockdown period before increasing steeply after it ended. For most of 2020, cocaine use remained steady, with an increase after the second lockdown. MDMA use decreased after the start of the first lockdown and remained steady throughout most of 2020 and 2021. In comparison to 2020, trends in 2021 were less variable and stimulant use did not appear to be as associated with COVID-19 restrictions. Overall, this study was able to show the impact of lockdown periods and the related social restrictions on illicit stimulant use. ENVIRONMENTAL IMPLICATION: Illicit drugs are hazardous chemicals, of concern both to humans and the environment. While studies have been undertaken to understand their temporal trends, this work utilizes wastewater-based epidemiology and daily sampling to provide a comprehensive understanding of the impact of the COVID-19 pandemic on the use of methamphetamine, MDMA and cocaine on one of the most locked-down cities in the world. Understanding the consequences of this significant intervention on illicit drug use could provide valuable insights into its potential environmental impact.


Asunto(s)
COVID-19 , Cocaína , Metanfetamina , Aguas Residuales , COVID-19/epidemiología , Humanos , Cocaína/análisis , Metanfetamina/análisis , Australia/epidemiología , N-Metil-3,4-metilenodioxianfetamina/análisis , Trastornos Relacionados con Sustancias/epidemiología , Contaminantes Químicos del Agua/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Detección de Abuso de Sustancias/métodos , Ciudades , Drogas Ilícitas/análisis , SARS-CoV-2
6.
Talanta ; 277: 126401, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876037

RESUMEN

Tobacco-specific alkaloids and nitrosamines are important biomarkers for the estimation of tobacco use and human exposure to tobacco-specific nitrosamines that can be monitored by wastewater analysis. Thus far their analysis has used solid phase extraction, which is costly and time-consuming. In this study, we developed a direct injection liquid chromatography-tandem mass spectrometry method for the quantification of two tobacco-specific alkaloids and five nitrosamines in wastewater. The method achieved excellent linearity (R2 > 0.99) for all analytes, with calibration ranging from 0.10 to 800 ng/L. Method limits of detection and quantification were 0.17 ng/L (N-nitrosonornicotine, NNN) and 1.0 ng/L (N-nitrosoanatabine (NAT) and NNN), with acceptable accuracy (100 % ± 20 %) and precision (± 15 %). Analyte loss during filtration was < 15 %, and the relative matrix effect was < 10 %. The method was applied to 43 pooled wastewater samples collected from three wastewater treatment plants in Australia between 2017 and 2021. Anabasine and anatabine were detected in all samples at concentrations of 5.0 - 33 ng/L and 12 - 41 ng/L, respectively. Three of the five tobacco-specific nitrosamines (NAT, NNN, and (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) (NNAL)) were detected, in < 50 % of the wastewater samples, with concentrations nearly ten times lower than the tobacco alkaloids (< 1.0 - 6.2 ng/L). In-sewer stability of the nitrosamines was also assessed in this study, with four (NAT, NNAL, NNN, and N-nitrosoanabasine (NAB)) being stable (i.e. < 20 % transformation over 12 h in both control reactor (CR) and rising main reactor (RM) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being moderately stable (< 40 % loss over 12 h in RM). This direct injection method provides a high-throughput approach in simultaneous investigation of tobacco use and assessment of public exposure to tobacco-specific nitrosamines.


Asunto(s)
Alcaloides , Nicotiana , Nitrosaminas , Espectrometría de Masas en Tándem , Aguas Residuales , Nitrosaminas/análisis , Nicotiana/química , Aguas Residuales/análisis , Aguas Residuales/química , Alcaloides/análisis , Espectrometría de Masas en Tándem/métodos , Límite de Detección , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
7.
Water Res X ; 23: 100224, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38711798

RESUMEN

The ongoing evolution of SARS-CoV-2 is a significant concern, especially with the decrease in clinical sequencing efforts, which impedes the ability of public health sectors to prepare for the emergence of new variants and potential COVID-19 outbreaks. Wastewater-based epidemiology (WBE) has been proposed as a surveillance program to detect and monitor the SARS-CoV-2 variants being transmitted in communities. However, research is limited in evaluating the effectiveness of wastewater collection at sentinel sites for monitoring disease prevalence and variant dynamics, especially in terms of inferring the epidemic patterns on a broader scale, such as at the state/province level. This study utilized a multiplexed tiling amplicon-based sequencing (ATOPlex) to track the longitudinal dynamics of variant of concern (VOC) in wastewater collected from municipalities in Queensland, Australia, spanning from 2020 to 2022. We demonstrated that wastewater epidemiology measured by ATOPlex exhibited a strong and consistent correlation with the number of daily confirmed cases. The VOC dynamics observed in wastewater closely aligned with the dynamic profile reported by clinical sequencing. Wastewater sequencing has the potential to provide early warning information for emerging variants. These findings suggest that WBE at sentinel sites, coupled with sensitive sequencing methods, provides a reliable and long-term disease surveillance strategy.

8.
Drug Alcohol Depend ; 259: 111317, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692136

RESUMEN

BACKGROUND: Wastewater analysis provides a complementary measure of alcohol use in whole communities. We assessed absolute differences and temporal trends in alcohol consumption by degree of remoteness and socioeconomics indicators in Australia from 2016 to 2023. METHODS: Alcohol consumption estimates from 50 wastewater treatment plants (WWTP) in the Australian National Wastewater Drug Monitoring Program were used. Trends were analysed based on 1) site remoteness: Major Cities, Inner Regional and a combined remoteness category of Outer Regional and Remote, and 2) using two socioeconomic indexes from the Australian Bureau of Statistics (ABS) relating to advantage and disadvantage for Income, education, occupation, and housing. RESULTS: Consumption estimates were similar for Major Cities and Inner Regional areas (14.3 and 14.4L/day/1000 people), but significantly higher in Outer Regional and Remote sites (18.6L/day/1000 people). Consumption was decreasing in Major cities by 4.5% annually, Inner Regional by 2.4%, and 3.5% in the combined Outer Regional and Remote category. Consumption estimates were higher in socioeconomically advantaged quartiles than those of lower advantage (0%-25% mean = 13.0, 75%-100% mean = 17.4). Consumption in all quartiles decreased significantly over the 7 year period with annual rates of decrease of 0.9%, 3.7%, 3.6%, and 3.0% for the lowest to highest quartile, respectively. CONCLUSIONS: Declines in Australian alcohol consumption have been steeper in large urban areas than regional and remote areas. There were smaller annual decreases in the most socioeconomically disadvantaged areas. If continued, these trends may increase Australian health inequalities. Policy and prevention work should be appropriately targeted to produce more equitable long-term outcomes.


Asunto(s)
Consumo de Bebidas Alcohólicas , Factores Socioeconómicos , Aguas Residuales , Humanos , Australia/epidemiología , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/tendencias , Masculino
9.
Diabetes Res Clin Pract ; 212: 111691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710288

RESUMEN

AIMS: This study aims to investigate the trends in treatment coverage through dispensing diabetes medications in Vietnam from 2015 to 2021. The findings will serve to inform health policies to mitigate the health burden of Type 2 diabetes mellitus (T2DM). METHODS: We collected information on major antidiabetic medicines from General Department of Vietnam Customs and payments for antidiabetics via the National Health Insurance Program. We applied ordinary least squares models, accounting for economic and health outcome characteristics, to estimate the association between the annual mass of medications and related factors. RESULTS: Nationally, the total mass/doses of all antidiabetic drugs increased rapidly from 2015 to 2021, based on both databases. Metformin was the most frequently prescribed medicine, with the total mass increasing nearly threefold over the study period. Gliclazide, a Sulfonylureas drug, ranked second. In the multivariate regression analysis, a one-unit increase in adults with diabetes (in 1,000 s) was associated with 0.11 % (95 %CI = 0.0005; 0.0076) and 0.13 % (95%CI = 0.0007; 0.0242) higher mass of Metformin and Glimepiride, respectively. CONCLUSION: Our data suggested that policies changes were related to significant increase in antidiabetic medication dispenses in Vietnam. The high treatment coverage indicates impressive progress in achieving universal health coverage in Vietnam, meeting the UN Sustainable Development Goal (SDG).


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Cobertura Universal del Seguro de Salud , Humanos , Vietnam/epidemiología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/economía , Cobertura Universal del Seguro de Salud/tendencias , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Masculino , Persona de Mediana Edad , Adulto , Metformina/uso terapéutico , Anciano
10.
J Hazard Mater ; 470: 134203, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581874

RESUMEN

Wastewater treatment plants (WWTPs) have been recognized as secondary sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. In this study, PFAS concentrations were measured in effluent and biosolids samples collected from 75 WWTPs across Australia during the 2016 Census period, which covers more than half of the Australian population. Twelve PFAS compounds, including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four perfluoro sulfonic acids (PFSAs) such as perfluorobutane sulfonate (PFBS), perfuorohexane sulfonic (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecane sulfonic acid (PFDS), and one fluorotelomer sulfonic acid (6:2 FTS), were detected in the effluent, with concentrations up to 504 ng/L (PFHxS). Among these, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoropentanic acid (PFPeA) exhibited the highest median concentrations. In the biosolids, a total of 21 PFAS compounds were detected, encompassing ten C4-C14 PFCAs, four PFSAs, two FTS (6:2 and 8:2 FTS), perfluorooctane sulfonamide (PFOSA), two perfluorooctane sulfonamido acetic acid (NMethyl FOSAA and NEthyl FOSAA), and two perfluorooctane sulfonamido ethanol (FOSE), with dry weight (dw) concentrations approaching 235 ng/g (PFOS). The highest median and mean concentrations were observed for perfluorodecanoic acid (PFDA) and PFOS. An annual discharge of approximately 250 kg of the total 21 PFAS compounds was estimated through the effluent and biosolids of the participating WWTPs. Notably, PFOS and 6:2 FTS constituted the largest proportion of total PFAS in the WWTPs' output. While PFCAs were higher in effluent concentrations compared to influent levels across most WWTPs (92% of WWTPs for ∑8PFCAs), the concentrations of PFSAs either decreased or remained relatively stable (in 80% of WWTPs for ∑4PFSAs) throughout the wastewater treatment process.


Asunto(s)
Fluorocarburos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Australia , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Monitoreo del Ambiente , Aguas del Alcantarillado/análisis , Ácidos Alcanesulfónicos/análisis
11.
Sci Total Environ ; 908: 167966, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38476760

RESUMEN

The lack of standardized methods and large differences in virus concentration and extraction workflows have hampered Severe Acute Respiratory Syndrome (SARS-CoV-2) wastewater surveillance and data reporting practices. Numerous studies have shown that adsorption-extraction (AE) method holds promise, yet several uncertainties remain regarding the optimal AE workflow. Several procedural components may influence the recovered concentrations of target nucleic acid, including membrane types, homogenization instruments, speed and duration, and lysis buffer. In this study, 42 different AE workflows that varied these components were compared to determine the optimal workflow by quantifying endogenous SARS-CoV-2, human adenovirus 40/41 (HAdV 40/41), and a bacterial marker gene of fecal contamination (Bacteroides HF183). Our findings suggest that the workflow chosen had a significant impact on SARS-CoV-2 concentrations, whereas it had minimal impact on HF183 and no effect on HAdV 40/41 concentrations. When comparing individual components in a workflow, such as membrane type (MF-Millipore™ 0.45 µm MCE vs. Isopore™ 0.40 µm), we found that they had no impact on SARS-CoV-2, HAdV 40/41, and HF183 concentrations. This suggests that at least some consumables and equipment are interchangeable. Buffer PM1 + TRIzol-based workflows yielded higher concentrations of SARS-CoV-2 than other workflows. HF183 concentrations were higher in workflows without chloroform. Similarly, higher homogenization speeds (5000-10,000 rpm) led to increased concentrations of SARS-CoV-2 and HF183 but had no effect on HAdV 40/41. Our findings indicate that minor enhancements to the AE workflow can improve the recovery of viruses and bacteria from the wastewater, leading to improved outcomes from wastewater surveillance efforts.


Asunto(s)
Adenovirus Humanos , Ácidos Nucleicos , Aguas Residuales , Humanos , Adsorción , Monitoreo Epidemiológico Basado en Aguas Residuales , Flujo de Trabajo , SARS-CoV-2
12.
Sci Total Environ ; 926: 172057, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552972

RESUMEN

Wastewater-based epidemiology (WBE) is proposed as a cost-effective approach to objectively monitor the antidepressant use but it requires more accurate correction factors (CF) than what had been used in previous studies. Amitriptyline is a popular prescription medicine for treating depression and nerve pain, which could be prone to misuse and need monitoring. The CF of amitriptyline employed in previous WBE studies varied from 10 to 100, leading to substantial disparities between WBE estimates and expected mass of antidepressants in wastewater. Hence, this study aimed to take amitriptyline as a case study and refine the CF by correlating mass loads measured in wastewater from 12.2 million inhabitants collected during the 2016 Census with corresponding annual sales data. The triangulation of WBE data and sales data resulted in a newly-derived CF of 7, which is significantly different from the CF values used in previous studies. The newly derived CF was applied to a secondary, multi-year (2017 to 2020) WBE dataset for validation against sales data in the same period, demonstrating the estimated amitriptyline use (380 ± 320 mg/day/1000 inhabitants) is consistent with sales data (450 ± 190 mg/day/1000 inhabitants). When we applied the new CF to previous studies, the wastewater consumption loads matched better to prescription data than previous WBE estimations. The refined CF of amitriptyline can be used in future WBE studies to improve the accuracy of the consumption estimates.


Asunto(s)
Amitriptilina , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Antidepresivos/uso terapéutico
13.
J Hazard Mater ; 466: 133627, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301440

RESUMEN

Aqueous film forming foam (AFFF)-impacted asphalt and concrete may serve as potential secondary sources of per- and polyfluoroalkyl substances (PFAS) to the environment through surficial leaching. We aimed to understand the vertical distribution and surficial release of PFAS from AFFF-impacted asphalt and concrete cores collected from various locations (∼10-70 m distance between samples). Among the PFAS analyzed, 6:2 FTS was observed as having the highest concentration in the surface layer (0 - 0.5 cm) of concrete (225 µg kg-1) and in the runoff from the concrete (2600 ng L-1). PFOS was detected at the highest concentration in the surface layer (0 - 0.5 cm) of asphalt (47 µg kg-1) and associated runoff (780 ng L-1). The total mass of PFAS released during three rainfall simulations accounts for a fraction of the total mass in the surface layer (0 - 0.5 cm), ranging from 0.10 - 9.8% and 0.078 - 2.4% for asphalt and concrete cores, respectively. Asphalt exhibited a higher release rate than concrete, demonstrated by the higher total release coefficient of PFAS (4 - 16 m-2) compared to that of concrete cores (1 - 5 m-2). These results suggested that, similar to concrete, AFFF-impacted asphalt may be a secondary source of PFAS to the environment.

14.
Water Res ; 254: 121335, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417269

RESUMEN

Antibiotic use, particularly inappropriate use by irrational prescribing or over-the-counter purchases, is of great concern for China as it facilitates the spread of antibiotic resistances. In this study, we applied wastewater-based epidemiology (WBE) to monitor the total consumption of eight common antibiotics in three cities in northern, eastern and southern China. Wastewater samples were successively collected from 17 wastewater treatment plants including weekdays and weekends spanning four seasons between 2019 and 2021. The concentration of antibiotics and their corresponding metabolites showed a significant correlation, confirming the measured antibiotics were actually consumed. Different seasonal trends in antibiotic use were found among the cities. It was more prevalent in the winter in the northern city Beijing, with the high antibiotic consumption attributed to peak influenza occurrence in the city. This is clear evidence of irrational prescription of antibiotics since it's known that antibiotics do little to treat influenza. In terms of overall consumption, Foshan is significantly lower, thanks to warmer climate and higher use of herbal tea as a prevention measure. WBE estimates of antibiotic consumption were relatively comparable with other data sources, with azithromycin as the top antibiotic measured here. The studied cities had higher WBE estimated antibiotics consumption than results of previous studies in the literature. Monitoring antibiotic use in different areas and periods through WBE in combination with complementary information, can better inform appropriate antibiotic guideline policies in various regions and nations.


Asunto(s)
Gripe Humana , Contaminantes Químicos del Agua , Humanos , Antibacterianos , Monitoreo Epidemiológico Basado en Aguas Residuales , Ciudades , Beijing , Contaminantes Químicos del Agua/análisis
15.
Water Res ; 253: 121300, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367385

RESUMEN

Landfills are the primary endpoint for the disposal of PFAS-laden waste, which subsequently releases PFAS to the surrounding environments through landfill leachate. Ozone foam fractionation emerges as a promising technology for PFAS removal to address the issue. This study aims to (i) assess the effectiveness of the ozone foam fractionation system to remove PFAS from landfill leachate, and (ii) quantify equilibrium PFAS adsorption onto the gas-water interface of ozone bubbles, followed by a comparison with air foam fractionation. The results show that ozone foam fractionation is effective for PFAS removal from landfill leachate, with more than 90 % long-chain PFAS removed. The identified operating conditions provide valuable insights for industrial applications, guiding the optimization of ozone flow rates (1 L/min), dosing (43 mg/L) and minimizing foamate production (4 % wettability). The equilibrium modelling reveals that the surface excess of air bubbles exceeds that of ozone bubbles by 20-40 % at a corresponding PFAS concentration. However, the overall removal of PFAS from landfill leachate by ozone foam fractionation remains substantial. Notably, ozone foam fractionation generates foamate volumes 2 - 4 times less, resulting in significant cost savings for the final disposal of waste products and reduced site storage requirements.


Asunto(s)
Fluorocarburos , Ozono , Eliminación de Residuos , Contaminantes Químicos del Agua , Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Instalaciones de Eliminación de Residuos
16.
Sci Total Environ ; 917: 170556, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296088

RESUMEN

Exposure to indoor air pollution (IAP) is a leading environmental risk for respiratory diseases. We investigated the relationship between respiratory symptoms and polluting indoor activities such as smoking, cooking and contact with pets among children in Ho Chi Minh City (HCMC), Vietnam. A cross-sectional survey applied a multistage sampling method in 24 randomly selected secondary schools across the city. Approximately 15,000 students completed self-administrated questionnaires on risk factors and respiratory health outcomes within the preceding 12 months. Data were analyzed using a multivariable logistic regression model with robust standard errors. Wheeze was the most common respiratory symptom (39.5 %) reported, followed by sneezing and runny nose (28.3 %). A small percentage of students self-reported asthma (8.6 %). Approximately 56 % of participants lived with family members who smoked. A positive association between exposure to indoor secondhand smoke and respiratory symptoms was observed, with adjusted odds ratios (aOR) of 1.41 (95 % CI: 1.25-1.60, p < 0.001) for wheezing and 1.64 (95 % CI: 1.43-1.87, p < 0.001) for sneezing and runny nose, respectively. Using an open stove fuelled by coal, wood, or kerosene for cooking was associated with wheeze (aOR: 1.36, CI 95 %: 1.10-1.68, p = 0.01) and sneezing and runny nose (aOR: 1.36, CI 95 %: 1.09-1.69, p = 0.01). In the present study, IAP was associated with adverse health outcomes, as evidenced by an increase in respiratory symptoms reported within the previous 12 months.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Contaminación por Humo de Tabaco , Niño , Humanos , Contaminación del Aire Interior/efectos adversos , Estudios Transversales , Estornudo , Vietnam/epidemiología , Rinorrea , Culinaria , Factores de Riesgo
17.
Water Res ; 249: 120978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071905

RESUMEN

Monitoring urinary markers of dietary, disease, and stress by wastewater-based epidemiology (WBE) is a promising tool to better understand population health and wellbeing. However, common urinary biomarkers are subject to degradation in sewer systems and their fates have to be assessed before they can be used in WBE. This study investigated the stability of 31 urinary biomarkers (12 food biomarkers, 8 vitamins, 9 oxidative stress biomarkers, and 1 histamine biomarker) in a laboratory sewer sediment reactor and evaluated their suitability for WBE, considering their detectability in real wastewater and in-sewer stability. These biomarkers showed various transformation patterns, among which 16 compounds had half-lives <2 h while other 15 compounds presented moderate to high stability (2 to >500 h). Thirteen biomarkers showed potential for WBE because of their consistently measurable concentrations in untreated wastewater and sufficient in-sewer stability. Eighteen biomarkers were unsuitable due to their rapid in-sewer degradation and/or undetectable concentration levels in untreated wastewater using previous methods. Transformation rates of these biomarkers showed generally weak relationships with molecular properties but relatively higher correlations with biological activities in sewers. Overall, this study determined in-sewer stability of 31 health-related biomarkers through laboratory experiments, providing new findings to WBE for population health assessment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis , Biomarcadores , Alimentos , Aguas del Alcantarillado
18.
Water Res ; 250: 121040, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154341

RESUMEN

Previous wastewater-based epidemiology (WBE) studies have reported decreasing trends of nicotine and tobacco use in Australia before 2017, but there is concern that increasing illicit use of nicotine in vaping products and illicit tobacco could reverse this progress. This study aimed to assess temporal trends of nicotine consumption and specifically tobacco consumption via wastewater analysis in a population in Australia between 2013 and 2021. One week of daily wastewater samples were analyzed every two months from February 2013 to December 2021 in a regional city serving ∼100,000 people. A total of 340 daily samples were analyzed for anabasine (tobacco specific biomarker) and nicotine metabolites, cotinine and hydroxycotinine, using direct injection method by liquid chromatography with tandem mass spectrometry. Daily consumption estimates were calculated from daily flow data, population estimates and previously reported excretion factors. Linear spline regression was performed to identify periods when significant change of slopes occurred and to evaluate the temporal trends. Tobacco use monitored using anabasine as a biomarker, showed a decreasing trend over the whole period with a higher rate of decrease during the first two years (2013-2014, 21 % decrease) compared to the later 7 years (2015-2021, 10 % decrease). Nicotine use, monitored using cotinine and hydroxycotinine, showed a downward trend between 2013 and 2018 (2013-2014: 18 % decrease, p < 0.05; 2015-2016: 6 % increase, p = 0.48; Feb-Dec 2017: 15 % decrease, p = 0.39) followed by a significant increase from 2018 to 2021 (40 % increase, p < 0.001). This finding suggests the increasing use of non-tobacco nicotine-based products. Additionally, the tobacco use estimate by wastewater analysis was higher than the tobacco sales data, which suggests the use of illicit tobacco in the catchment.


Asunto(s)
Cotinina , Nicotina , Humanos , Nicotina/análisis , Cotinina/análisis , Aguas Residuales , Anabasina/análisis , Queensland/epidemiología , Australia/epidemiología , Biomarcadores
19.
Lancet Reg Health West Pac ; 40: 100943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38116497

RESUMEN

This study aims to investigate climate change's impact on health and adaptation in Vietnam through a systematic review and additional analyses of heat exposure, heat vulnerability, awareness and engagement, and projected health costs. Out of 127 reviewed studies, findings indicated the wider spread of infectious diseases, and increased mortality and hospitalisation risks associated with extreme heat, droughts, and floods. However, there are few studies addressing health cost, awareness, engagement, adaptation, and policy. Additional analyses showed rising heatwave exposure across Vietnam and global above-average vulnerability to heat. By 2050, climate change is projected to cost up to USD1-3B in healthcare costs, USD3-20B in premature deaths, and USD6-23B in work loss. Despite increased media focus on climate and health, a gap between public and government publications highlighted the need for more governmental engagement. Vietnam's climate policies have faced implementation challenges, including top-down approaches, lack of cooperation, low adaptive capacity, and limited resources.

20.
Environ Sci Technol ; 57(50): 21061-21070, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37939218

RESUMEN

Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.


Asunto(s)
Hidrocarburos Clorados , Hidrocarburos Clorados/análisis , Parafina/análisis , Vietnam , Calibración , Monitoreo del Ambiente/métodos , China , Australia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA