Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Bioorg Med Chem ; 100: 117618, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38309201

The virally encoded 3C-like protease (3CLpro) is a well-validated drug target for the inhibition of coronaviruses including Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Most inhibitors of 3CLpro are peptidomimetic, with a γ-lactam in place of Gln at the P1 position of the pseudopeptide chain. An effort was pursued to identify a viable alternative to the γ-lactam P1 mimetic which would improve physicochemical properties while retaining affinity for the target. Discovery of a 2-tetrahydrofuran as a suitable P1 replacement that is a potent enzymatic inhibitor of 3CLpro in SARS-CoV-2 virus is described herein.


Antiviral Agents , Coronavirus Protease Inhibitors , Furans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Lactams , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Furans/chemistry , Coronavirus Protease Inhibitors/chemistry
2.
Bioorg Med Chem Lett ; 29(11): 1407-1412, 2019 06 01.
Article En | MEDLINE | ID: mdl-30962087

A series of DNA gyrase inhibitors were designed based on the X-ray structure of a parent thiophene scaffold with the objective to improve biochemical and whole-cell antibacterial activity, while reducing cardiac ion channel activity. The binding mode and overall design hypothesis of one series was confirmed with a co-crystal structure with DNA gyrase. Although some analogs retained both biochemical activity and whole-cell antibacterial activity, we were unable to significantly improve the activity of the series and analogs retained activity against the cardiac ion channels, therefore we stopped optimization efforts.


Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , Drug Design , Escherichia coli/drug effects , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Mice, Knockout , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
3.
Proc Natl Acad Sci U S A ; 114(22): E4492-E4500, 2017 05 30.
Article En | MEDLINE | ID: mdl-28507124

A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase-DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development.


Anti-Bacterial Agents , DNA Cleavage , DNA Gyrase , Thiophenes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Crystallography, X-Ray , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Drug Discovery , Models, Molecular , Thiophenes/chemistry , Thiophenes/metabolism
4.
Bioorg Med Chem Lett ; 23(12): 3584-8, 2013 Jun 15.
Article En | MEDLINE | ID: mdl-23664879

1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.


Amides/chemistry , Amides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Piperidines/chemistry , Piperidines/pharmacology , Amides/chemical synthesis , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Epoxide Hydrolases/metabolism , Humans , Models, Molecular , Piperidines/chemical synthesis , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , Triazines/pharmacology
5.
Int J Cardiol ; 167(1): 210-9, 2013 Jul 15.
Article En | MEDLINE | ID: mdl-22236509

BACKGROUND: A contributory role for soluble epoxide hydrolase (sEH) in cardiac remodeling post-myocardial infarction (MI) has been suggested; however effects of sEH inhibition following MI have not been evaluated. In this study, we examined in vivo post-MI anti-remodeling effects of a novel sEH inhibitor (GSK2188931B) in the rat, and evaluated its direct in vitro effects on hypertrophy, fibrosis and inflammation. METHODS AND RESULTS: Post-MI administered GSK2188931B (80 mg/kg/d in chow) for 5 weeks improved left ventricular (LV) ejection fraction compared to vehicle-treated (Veh) rats (P<0.01; Sham 65 ± 2%, MI+Veh 30 ± 2%, MI+GSK 43 ± 2%) without affecting systolic blood pressure. Percentage area of LV tissue sections stained positive for picrosirius red (PS) and collagen I (CI) were elevated in LV non-infarct zone (P<0.05; NIZ; PS: Sham 1.46 ± 0.13%, MI+Veh 2.14 ± 0.22%, MI+GSK 1.28 ± 0.14%; CI: Sham 2.57 ± 0.17%, MI+Veh 5.06 ± 0.58%, MI+GSK 2.97 ± 0.34%) and peri-infarct zone (P<0.001; PIZ; PS: Sham 1.46 ± 0.13%, MI+Veh 9.06 ± 0.48%, MI+GSK 6.31 ± 0.63%; CI: Sham 2.57±0.17%, MI+Veh 10.51 ± 0.64%, MI+GSK 7.77 ± 0.57%); GSK2188931B attenuated this increase (P<0.05). GSK2188931B reduced macrophage infiltration into the PIZ (P<0.05). GSK2188931B reduced AngII- and TNFα-stimulated myocyte hypertrophy, AngII- and TGFß-stimulated cardiac fibroblast collagen synthesis, including markers of gene expression ANP, ß-MHC, CTGF and CI (P<0.05). GSK2188931B reduced TNFα gene expression in lipopolysaccharide (LPS)-stimulated monocytes (P<0.05). CONCLUSION: sEH inhibition exerts beneficial effects on cardiac function and ventricular remodeling post-MI, and direct effects on fibrosis and hypertrophy in cardiac cells. These findings suggest that sEH is an important contributor to the pathological remodeling following MI, and may be a useful target for therapeutic blockade in this setting.


Epoxide Hydrolases/antagonists & inhibitors , Myocardial Infarction/drug therapy , Piperidines/therapeutic use , Triazines/therapeutic use , Ventricular Remodeling/drug effects , Animals , Animals, Newborn , Epoxide Hydrolases/blood , Epoxide Hydrolases/metabolism , Male , Myocardial Infarction/blood , Myocardial Infarction/enzymology , Piperidines/blood , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Solubility , Triazines/blood , Triazines/pharmacology , Ventricular Remodeling/physiology
6.
Bioorg Med Chem Lett ; 20(14): 4104-7, 2010 Jul 15.
Article En | MEDLINE | ID: mdl-20542694

Benzofuran-substituted urea analogs have been identified as novel P2Y(1) receptor antagonists. Structure-activity relationship studies around the urea and the benzofuran moieties resulted in compounds having improved potency. Several analogs were shown to inhibit ADP-mediated platelet activation.


Benzofurans/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/metabolism , Urea/chemistry , Benzofurans/pharmacology , Platelet Activation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Urea/pharmacology
8.
J Org Chem ; 73(17): 6772-9, 2008 Sep 05.
Article En | MEDLINE | ID: mdl-18681407

Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe)2]2 and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.


Alkenes/chemistry , Carbon/chemistry , Hydrocarbons, Cyclic/chemistry , Hydrogen/chemistry , Catalysis , Crystallography, X-Ray , Cyclization , Imines/chemistry , Isomerism , Ligands , Organophosphorus Compounds/chemistry , Ruthenium Compounds/chemistry
9.
Org Lett ; 8(8): 1745-7, 2006 Apr 13.
Article En | MEDLINE | ID: mdl-16597156

[reaction: see text] The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.


Indoles/chemical synthesis , Protein Kinase C/antagonists & inhibitors , Catalysis , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
10.
J Am Chem Soc ; 127(48): 16778-9, 2005 Dec 07.
Article En | MEDLINE | ID: mdl-16316211

We report a phosphine-mediated intramolecular aldol cyclization of unsaturated diketones that proceeds with extremely high levels of regioselectivity for the cross-conjugated bicyclic dienone products. The sense of regioselectivity observed in this reaction is complementary to that obtained using traditional aldol conditions. Experimental evidence that supports the involvement of a phosphine Michael adduct is described.


Alkenes/chemistry , Cycloparaffins/chemical synthesis , Ketones/chemical synthesis , Phosphines/chemistry , Cyclization , Ketones/chemistry , Stereoisomerism , Vinyl Compounds/chemical synthesis , Vinyl Compounds/chemistry
11.
J Org Chem ; 70(17): 6775-81, 2005 Aug 19.
Article En | MEDLINE | ID: mdl-16095296

A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh3)3RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.


Carbon/chemistry , Hydrogen/chemistry , Imines/chemistry , Mescaline/analogs & derivatives , Mescaline/chemical synthesis
12.
J Am Chem Soc ; 126(23): 7192-3, 2004 Jun 16.
Article En | MEDLINE | ID: mdl-15186153

The first highly enantioselective catalytic reaction involving aromatic C-H bond activation is communicated. Enantioselective cyclization of aromatic ketimines containing alkenyl groups tethered at the meta position of an imine directing group has been achieved using 5 mol % [RhCl(coe)2]2 and 15 mol % of an (S)-binol-derived phosphoramidite ligand. Selectivities of up to 96% ee and up to quantitative yields were obtained. Moreover, the identified catalyst system enables the intramolecular alkylation reaction to be performed at temperatures 75 degrees C lower than our previously reported achiral system. The reaction can even be performed at room temperature for one of the optimal substrates.


Carbon/chemistry , Hydrogen/chemistry , Imines/chemistry , Imipramine/analogs & derivatives , Catalysis , Cyclization , Imipramine/chemistry , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Stereoisomerism , Temperature
13.
J Am Chem Soc ; 124(44): 13329-38, 2002 Nov 06.
Article En | MEDLINE | ID: mdl-12405862

A constrained derivative, cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid, cis-W3, was designed to test the rotamer model of tryptophan photophysics. The conformational constraint enforces a single chi(1) conformation, analogous to the chi(1) = 60 degrees rotamer of tryptophan. The side-chain torsion angles in the X-ray structure of cis-W3 were chi(1) = 58.5 degrees and chi(2) = -88.7 degrees. Molecular mechanics calculations suggested two chi(2) rotamers for cis-W3 in solution, -100 degrees and 80 degrees, analogous to the chi(2) = +/-90 degrees rotamers of tryptophan. The fluorescence decay of the cis-W3 zwitterion was biexponential with lifetimes of 3.1 and 0.3 ns at 25 degrees C. The relative amplitudes of the lifetime components match the chi(2) rotamer populations predicted by molecular mechanics. The longer lifetime represents the major chi(2) = -100 degrees rotamer. The shorter lifetime represents the minor chi(2) = 80 degrees rotamer having the ammonium group closer to C4 of the indole ring (labeled C5 in the cis-W3 X-ray structure). Intramolecular excited-state proton transfer occurs at indole C4 in the tryptophan zwitterion (Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura,T. J. Am. Chem. Soc. 1984, 106, 4286-4287). Photochemical isotope exchange experiments showed that H-D exchange occurs exclusively at C5 in the cis-W3 zwitterion, consistent with the presence of the chi(2) = 80 degrees rotamer in solution. The rates of two nonradiative processes, excited-state proton and electron transfer, were measured for individual chi(2) rotamers. The excited-state proton-transfer rate was determined from H-D exchange and fluorescence lifetime data. The excited-state electron-transfer rate was determined from the temperature dependence of the fluorescence lifetime. The major quenching process in the -100 degrees rotamer is electron transfer from the excited indole to carboxylate. Electron transfer also occurs in the 80 degrees rotamer, but the major quenching process is intramolecular proton transfer. Both quenching processes are suppressed by deprotonation of the amino group. The results for cis-W3 provide compelling evidence that the complex fluorescence decay of the tryptophan zwitterion originates in ground-state heterogeneity with the different lifetimes primarily reflecting different intramolecular excited-state proton- and electron-transfer rates in various rotamers.


Carboxylic Acids/chemistry , Cyclohexanes/chemistry , Indoles/chemistry , Tryptophan/chemistry , Crystallography, X-Ray , Kinetics , Molecular Conformation , Solutions , Spectrometry, Fluorescence
...