Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 179: 106571, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39121789

RESUMEN

Controllable Pareto front learning (CPFL) approximates the Pareto optimal solution set and then locates a non-dominated point with respect to a given reference vector. However, decision-maker objectives were limited to a constraint region in practice, so instead of training on the entire decision space, we only trained on the constraint region. Controllable Pareto front learning with Split Feasibility Constraints (SFC) is a way to find the best Pareto solutions to a split multi-objective optimization problem that meets certain constraints. In the previous study, CPFL used a Hypernetwork model comprising multi-layer perceptron (Hyper-MLP) blocks. Transformer can be more effective than previous architectures on numerous modern deep learning tasks in certain situations due to their distinctive advantages. Therefore, we have developed a hyper-transformer (Hyper-Trans) model for CPFL with SFC. We use the theory of universal approximation for the sequence-to-sequence function to show that the Hyper-Trans model makes MED errors smaller in computational experiments than the Hyper-MLP model.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Aprendizaje Profundo , Estudios de Factibilidad , Humanos , Simulación por Computador
2.
Neural Netw ; 169: 257-273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913657

RESUMEN

Pareto Front Learning (PFL) was recently introduced as an efficient method for approximating the entire Pareto front, the set of all optimal solutions to a Multi-Objective Optimization (MOO) problem. In the previous work, the mapping between a preference vector and a Pareto optimal solution is still ambiguous, rendering its results. This study demonstrates the convergence and completion aspects of solving MOO with pseudoconvex scalarization functions and combines them into Hypernetwork in order to offer a comprehensive framework for PFL, called Controllable Pareto Front Learning. Extensive experiments demonstrate that our approach is highly accurate and significantly less computationally expensive than prior methods in term of inference time.


Asunto(s)
Algoritmos , Aprendizaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA