Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12665, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830927

RESUMEN

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Asunto(s)
Biomasa , Carbono , Colorantes Fluorescentes , Inflamación , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Humanos , Animales , Colorantes Fluorescentes/química , Células HeLa , Inflamación/metabolismo , Oryzias , Factor de Necrosis Tumoral alfa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos
2.
Sci Rep ; 14(1): 9618, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671084

RESUMEN

Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.


Asunto(s)
Citocinas , Puntos Cuánticos , Silicio , Puntos Cuánticos/química , Silicio/química , Humanos , Citocinas/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Oligodesoxirribonucleótidos/química , Interleucina-6/metabolismo , Propiedades de Superficie , Interferón-alfa/metabolismo , Interferón-alfa/química , Receptor Toll-Like 9/metabolismo
3.
RSC Adv ; 13(40): 28230-28249, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37753403

RESUMEN

Over recent years, carbon quantum dots (CQDs) have advanced significantly and gained substantial attention for their numerous benefits. These benefits include their simple preparation, cost-effectiveness, small size, biocompatibility, bright luminescence, and low cytotoxicity. As a result, they hold great potential for various fields, including bioimaging. A fascinating aspect of synthesizing CQDs is that it can be accomplished by using biomass waste as the precursor. Furthermore, the synthesis approach allows for control over the physicochemical characteristics. This paper unequivocally examines the production of CQDs from biomass waste and their indispensable application in bioimaging. The synthesis process involves a simple one-pot hydrothermal method that utilizes biomass waste as a carbon source, eliminating the need for expensive and toxic reagents. The resulting CQDs exhibit tunable fluorescence and excellent biocompatibility, making them suitable for bioimaging applications. The successful application of biomass-derived CQDs has been demonstrated through biological evaluation studies in various cell lines, including HeLa, Cardiomyocyte, and iPS, as well as in medaka fish eggs and larvae. Using biomass waste as a precursor for CQDs synthesis provides an environmentally friendly and sustainable alternative to traditional methods. The resulting CQDs have potential applications in various fields, including bioimaging.

4.
RSC Adv ; 13(9): 6051-6064, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36814879

RESUMEN

In recent years, the field of nanomaterials has exponentially expanded with versatile biological applications. However, one of the roadblocks to their clinical translation is the critical knowledge gap about how the nanomaterials interact with the biological microenvironment (nano-bio interactions). When nanomaterials are used as drug carriers or contrast agents for biological imaging, the nano-bio interaction-mediated protein conformational changes and misfolding could lead to disease-related molecular alterations and/or cell death. Here, we studied the conformation changes of human immunoglobulin G (IgG) upon interaction with silicon quantum dots functionalized with 1-decene, Pluronic-F127 (SiQD-De/F127 micelles) using UV-visible, fluorescence steady state and excited state kinetics, circular dichroism, and molecular modeling. Decene monolayer terminated SiQDs are accumulated inside the Pluronic F127 shells to form SiQD-De/F127 micelles and were shown to bind strongly with IgG. In addition, biological evaluation studies in cell lines (HeLa, Fibroblast) and medaka fish (eggs and larvae) showed enhanced uptake and minimal cytotoxicity. Our results substantiate that engineered QDs obviating the protein conformational changes could have adept bioefficacy.

5.
ACS Chem Biol ; 17(10): 2704-2709, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36190780

RESUMEN

Nanopore direct RNA sequencing (dRNA-Seq) reads reveal RNA modifications through consistent error profiles specific to a modified nucleobase. However, a null data set is required to identify actual RNA modification-associated errors for distinguishing it from confounding highly intrinsic sequencing errors. Here, we reveal that inosine creates a signature mismatch error in dRNA-Seq reads and obviates the need for a null data set by harnessing the selective reactivity of acrylonitrile for validating the presence of actual inosine modifications. Selective reactivity of acrylonitrile toward inosine altered multiple dRNA-Seq parameters like signal intensity and trace value. We also deduced the stoichiometry of inosine modification through deviation in signal intensity and trace value using this chemical biology approach. Furthermore, we devised Nano ICE-Seq, a protocol to overcome the low coverage issue associated with direct RNA sequencing. Taken together, our chemical probe-based approach may facilitate the knockout-free detection of disease-associated RNA modifications in clinical scenarios.


Asunto(s)
Acrilonitrilo , Secuenciación de Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inosina , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA