Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1183663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388928

RESUMEN

Background: Merosin-deficient congenital muscular dystrophy type 1A (MDC1A), also known as laminin-α2 chain-deficient congenital muscular dystrophy (LAMA2-MD), is an autosomal recessive disease caused by biallelic variants in the LAMA2 gene. In MDC1A, laminin- α2 chain expression is absent or significantly reduced, leading to some early-onset clinical symptoms including severe hypotonia, muscle weakness, skeletal deformity, non-ambulation, and respiratory insufficiency. Methods: Six patients from five unrelated Vietnamese families presenting with congenital muscular dystrophy were investigated. Targeted sequencing was performed in the five probands. Sanger sequencing was carried out in their families. Multiplex ligation-dependent probe amplification was performed in one family to examine an exon deletion. Results: Seven variants of the LAMA2 (NM_000426) gene were identified and classified as pathogenic/likely pathogenic variants using American College of Medical Genetics and Genomics criteria. Two of these variants were not reported in the literature, including c.7156-5_7157delinsT and c.8974_8975insTGAT. Sanger sequencing indicated their parents as carriers. The mothers of family 4 and family 5 were pregnant and a prenatal testing was performed. The results showed that the fetus of the family 4 only carries c.4717 + 5G>A in the heterozygous form, while the fetus of the family 5 carries compound heterozygous variants, including a deletion of exon 3 and c.4644C>A. Conclusion: Our findings not only identified the underlying genetic etiology for the patients, but also provided genetic counseling for the parents whenever they have an offspring.

2.
PLoS One ; 13(8): e0201092, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30110354

RESUMEN

We screened a library of botanical compounds purified from plants of Vietnam for modulators of the activity of a two-pore domain K+ channel, TREK-1, and we identified a hydroxycoumarin-related compound, ostruthin, as an activator of this channel. Ostruthin increased whole-cell TREK-1 channel currents in 293T cells at a low concentration (EC50 = 5.3 µM), and also activity of the TREK-2 channel (EC50 = 3.7 mM). In contrast, ostruthin inhibited other K+ channels, e.g. human ether-à-go-go-related gene (HERG1), inward-rectifier (Kir2.1), voltage-gated (Kv1.4), and two-pore domain (TASK-1) at higher concentrations, without affecting voltage-gated potassium channel (KCNQ1 and 3). We tested the effect of this compound on mouse anxiety- and depression-like behaviors and found anxiolytic activity in the open-field, elevated plus maze, and light/dark box tests. Of note, ostruthin also showed antidepressive effects in the forced swim and tail suspension tests, although previous studies reported that inhibition of TREK-1 channels resulted in an antidepressive effect. The anxiolytic and antidepressive effect was diminished by co-administration of a TREK-1 blocker, amlodipine, indicating the involvement of TREK-1 channels. Administration of ostruthin suppressed the stress-induced increase in anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in other mood disorder-related nuclei, e.g. the amygdala, paraventricular nuclei, and dorsal raphe nucleus. Ostruthin may exert its anxiolytic and antidepressive effects through a different mechanism from current drugs.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Canales de Potasio de Dominio Poro en Tándem/agonistas , Umbeliferonas/farmacología , Amlodipino/farmacología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/metabolismo , Masculino , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/farmacología , Fitoquímicos/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA