Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(4): 112380, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37061916

RESUMEN

Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.


Asunto(s)
Embrión de Mamíferos , Sumoilación , Animales , Ratones , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Desarrollo Embrionario , Diferenciación Celular/fisiología , Mamíferos
3.
Cell Rep ; 32(11): 108146, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937131

RESUMEN

Post-translational modification by SUMO is a key regulator of cell identity. In mouse embryonic fibroblasts (MEFs), SUMO impedes reprogramming to pluripotency, while in embryonic stem cells (ESCs), it represses the emergence of totipotent-like cells, suggesting that SUMO targets distinct substrates to preserve somatic and pluripotent states. Using MS-based proteomics, we show that the composition of endogenous SUMOylomes differs dramatically between MEFs and ESCs. In MEFs, SUMO2/3 targets proteins associated with canonical SUMO functions, such as splicing, and transcriptional regulators driving somatic enhancer selection. In contrast, in ESCs, SUMO2/3 primarily modifies highly interconnected repressive chromatin complexes, thereby preventing chromatin opening and transitioning to totipotent-like states. We also characterize several SUMO-modified pluripotency factors and show that SUMOylation of Dppa2 and Dppa4 impedes the conversion to 2-cell-embryo-like states. Altogether, we propose that rewiring the repertoire of SUMO target networks is a major driver of cell fate decision during embryonic development.


Asunto(s)
Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sumoilación , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo
4.
Cell Stem Cell ; 23(5): 742-757.e8, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401455

RESUMEN

Understanding general principles that safeguard cellular identity should reveal critical insights into common mechanisms underlying specification of varied cell types. Here, we show that SUMO modification acts to stabilize cell fate in a variety of contexts. Hyposumoylation enhances pluripotency reprogramming in vitro and in vivo, increases lineage transdifferentiation, and facilitates leukemic cell differentiation. Suppressing sumoylation in embryonic stem cells (ESCs) promotes their conversion into 2-cell-embryo-like (2C-like) cells. During reprogramming to pluripotency, SUMO functions on fibroblastic enhancers to retain somatic transcription factors together with Oct4, Sox2, and Klf4, thus impeding somatic enhancer inactivation. In contrast, in ESCs, SUMO functions on heterochromatin to silence the 2C program, maintaining both proper H3K9me3 levels genome-wide and repression of the Dux locus by triggering recruitment of the sumoylated PRC1.6 and Kap/Setdb1 repressive complexes. Together, these studies show that SUMO acts on chromatin as a glue to stabilize key determinants of somatic and pluripotent states.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Células Cultivadas , Reprogramación Celular , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo
5.
Cell Rep ; 18(12): 2907-2917, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329683

RESUMEN

The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.


Asunto(s)
Neoplasias Cerebelosas/patología , Proteínas de Unión al ADN/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias Cerebelosas/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Mutación/genética , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Oncogenes , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica , Proto-Oncogenes Mas , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA