Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Ecotoxicol Environ Saf ; 124: 303-308, 2016 Feb.
Article En | MEDLINE | ID: mdl-26580897

Ortho-substituted polychlorinated biphenyls (PCBs) preferentially accumulate in the brain and cerebrospinal fluid (CSF) compared with other PCBs. We previously demonstrated in ewes that an identical dose of PCB153, the most environmentally prevalent congener, resulted in a higher plasma concentration during short days (SD: 1200pg/ml) than during long days (LD: 200pg/ml). Moreover, PCB153 treatment only reduced the SD tight junction protein content in the choroid plexus (CP), which was followed by a significant increase of the PCB153 concentration in the CSF. The aim of the present study was to evaluate how PCB153 treatment affects the VEGF/VEGFR system that maintains CSF homoeostasis and CP function. To do so, we collected CPs from ovariectomised, oestradiol-replaced adult ewes maintained under artificial LD or SD and treated them per os with low doses of PCB153 (0.3mg/kg, 3 times a week for 3 weeks). Exposure to PCB153 significantly affected (P<0.05) the VEGF/VEGFR system during the SD period, provoking increases in VEGF164 mRNA and protein levels and decreases in VEGFR-1 mRNA levels and VEGFR-2 mRNA and protein levels. These results suggest that exposure to environmentally relevant dose of PCB153 affects the VEGF/VEGFR system, which is involved in the fenestration of the CP endothelium and therefore in CSF production.


Choroid Plexus/drug effects , Photoperiod , Polychlorinated Biphenyls/toxicity , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Brain/metabolism , Choroid Plexus/metabolism , Dose-Response Relationship, Drug , Estradiol , Female , RNA, Messenger/metabolism , Sheep
2.
Neurotoxicol Teratol ; 37: 63-7, 2013.
Article En | MEDLINE | ID: mdl-23567221

Ortho-substituted polychlorinated biphenyls (PCBs) preferentially accumulate in the brain and cerebrospinal fluid (CSF) compared to other PCBs. We previously reported that the same dose of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced higher concentrations in the CSF of treated animals compared to controls during short days (SD), while no differences were observed during long days (LD). Similarly, the plasma concentration of PCB153 in treated ewes was higher during SD than LD. To understand the structural and molecular events explaining the photoperiodically different concentration of PCBs in the CSF in sheep, we studied the effect of photoperiod on PCB153 action on tight junction (TJ) protein expression in the choroid plexus (CP) of ewes. For that purpose, we collected CP from ovariectomised, estradiol-treated ewes maintained under artificial LD or SD and orally administered with a low dose (0.33 mg/kg/day, 3 times per week for 3 weeks) of PCB153 or vehicle. Exposure to PCB153 affected TJ proteins only during SD, and the levels of claudin-1, zonula occludens-2 (ZO-2), and afadin (AF-6) were significantly lower when compared to vehicle-treated animals. No differences were observed for occludin, junctional adhesion molecule-1 (JAM-1), claudin-5, ZO-1 and ZO-3. There was no effect of PCB153 treatment on TJ-mRNA levels. These results indicate that PCB153 selectively alters TJ proteins in the ovine CP. These alterations appear to be associated with the level of PCB153 in the blood plasma, which is modulated by the photoperiod. This study emphasises the importance of photoperiod in the susceptibility of adult sheep to PCBs.


Choroid Plexus/drug effects , Environmental Pollutants/toxicity , Photoperiod , Polychlorinated Biphenyls/toxicity , Tight Junction Proteins/biosynthesis , Tight Junctions/drug effects , Animals , Blotting, Western , Choroid Plexus/metabolism , Dose-Response Relationship, Drug , Environmental Pollutants/blood , Female , Gene Expression/drug effects , Polychlorinated Biphenyls/blood , Seasons , Sheep , Tight Junction Proteins/genetics , Tight Junctions/metabolism , Time Factors , Tissue Distribution
3.
Cell Tissue Res ; 350(1): 157-66, 2012 Oct.
Article En | MEDLINE | ID: mdl-22622803

Vascular endothelial growth factor (VEGF-A) plays an important role in maintaining cerebrospinal fluid (CSF) homeostasis and the function of the choroid plexuses (CPs). The objective of the study was to determine the expression of vascular endothelial growth factor (VEGF-A), tyrosine kinase receptors Flt-1 and KDR and KDR co-receptor neuropilin 1 (NRP-1) in ovine CPs during different photoperiods. CPs were collected from the lateral brain ventricles from ovariectomized, estradiol-treated ewes during long day (LD; 16L:8D, n = 5) and short day (SD; 8L:16D, n = 5) photoperiods. We analyzed mRNA expression levels of two VEGF-A isoforms, VEGF-A (120) and VEGF-A (164) and our results indicate that VEGF-A (164) was the predominant isoform. Expression levels of VEGF-A and Flt-1 were similar during the SD and LD photoperiods. There were significant increases in KDR mRNA and protein expression (p < 0.05) and NRP-1 mRNA expression (p < 0.05) during SD. These data show that expression of KDR and its co-receptor NRP-1 are up-regulated by short photoperiod and that this effect is not dependent on ovarian steroids. Our results suggest that the VEGF-A-system may be involved in photoperiodic plasticity of CP capillaries and may therefore be responsible for photoperiodic changes in the CSF turnover rate in ewes.


Choroid Plexus/metabolism , Photoperiod , Receptors, Vascular Endothelial Growth Factor/metabolism , Sheep, Domestic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Antibody Specificity/immunology , Blotting, Western , Choroid Plexus/cytology , Female , Gene Expression Regulation , Immunohistochemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Vascular Endothelial Growth Factor/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Vascular Endothelial Growth Factor A/genetics
4.
Ecotoxicol Environ Saf ; 78: 336-43, 2012 Apr.
Article En | MEDLINE | ID: mdl-22197259

The effects of photoperiod on the cerebrospinal fluid (CSF) concentration of six ortho-substituted polychlorinated biphenyls (PCBs: PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180), the effects of an orally administered low dose of PCB153 (0.3mg/kg, three times a week for three weeks) on PCBs and thyroid hormones (THs) concentrations in the CSF and plasma, and the release of luteinizing hormone (LH) were determined in ovariectomized, estradiol-implanted ewes (2.5 years old) maintained indoors under artificial long day (LD, 16L: 8D) and short day (SD, 8L: 16D) conditions. Concentrations of two PCBs (PCB28 and PCB153) in the plasma and four PCBs in the CSF (PCB101, PCB138, PCB153, and PCB180) were significantly higher during LD than SD. Following PCB153 treatment, its concentration in the plasma was higher in SD (1.2 ± 0.3 ng/ml) than LD (0.2 ± 0.05 ng/ml), but similar in the CSF (10.2 ± 3.7 pg/ml vs. 13 ± 0.7 pg/ml) under both photoperiods. During SD, the concentration of PCB153 in the CSF was higher in treated animals than controls, while no differences were noted under LD. These findings indicate that in ewes, exposure of the brain to more highly chlorinated, ortho-substituted PCBs may be modulated by photoperiod. PCB153 treatment had no effect on plasma THs, but reduced total triiodothyronine concentration during LD and free thyroxine during SD in the CSF. Under both photoperiods, PCB153 reduced basal plasma LH and reinforced the inhibition of pulsatile LH release during LD. As PCB153 reduced LH and THs (which are involved in the seasonal control of reproduction in ewes), it may have a braking effect on seasonal transitions between active and inactive phases of reproduction.


Brain/metabolism , Gonadotropins/metabolism , Photoperiod , Polychlorinated Biphenyls/metabolism , Thyroid Hormones/metabolism , Animals , Estradiol/blood , Estradiol/pharmacology , Female , Gonadotropins/blood , Gonadotropins/cerebrospinal fluid , Luteinizing Hormone/blood , Luteinizing Hormone/cerebrospinal fluid , Sheep , Thyroid Hormones/blood , Thyroid Hormones/cerebrospinal fluid , Thyroxine/metabolism
5.
Brain Res ; 1393: 44-51, 2011 Jun 01.
Article En | MEDLINE | ID: mdl-21529785

Sheep from temperate latitudes exhibit seasonal variations in many physiological functions such as reproduction, food intake, body weight, and pelage growth. Majority of seasonal changes are controlled by the annual photoperiodic cycle and melatonin secretion. For reproduction, the resulting key event is a modulation of the negative feedback of steroids on gonadotropin secretion. However, this seasonal effect could also depend on variable uptake of steroids by the brain. Seasonal regulation of food intake also involves numerous peripheral hormones, among which the protein hormone leptin informs the brain on the metabolic status of the animal. It has been shown previously that access of progesterone, estradiol and leptin to the cerebrospinal fluid (CSF) increases under long days. This physiological modulation of the passage of hormones to the brain could depend on regulation of the permeability of the blood-CSF barrier. This study therefore compared the tight junction proteins in the choroid plexus of ewes exposed to short days or long days. Levels of occludin, zonula occludens proteins (ZO) ZO-1 and ZO-2, afadin and cadherin were significantly higher during short days, but no statistical difference was observed for junctional adhesion molecule 1 (JAM-1), ZO-3 or claudins 1 and 5. These results are consistent with an increase in the blood-CSF barrier permeability during long days through a regulation of tight junctions and show that the permeability could depend upon physiological conditions such as photoperiodic status.


Choroid Plexus/metabolism , Membrane Proteins/metabolism , Photoperiod , Tight Junctions/metabolism , Animals , Blood-Brain Barrier/metabolism , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Cerebrospinal Fluid/metabolism , Choroid Plexus/cytology , Claudin-1 , Female , Microfilament Proteins/metabolism , Occludin , Phosphoproteins/metabolism , Reproduction/physiology , Sheep , Zonula Occludens-1 Protein , Zonula Occludens-2 Protein
6.
Cerebrospinal Fluid Res ; 6: 9, 2009 Aug 04.
Article En | MEDLINE | ID: mdl-19653900

BACKGROUND: Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF) than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles. METHODS: The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP) after removal of a moderate volume (0.5 to 2 ml) of CSF (slope in mmHg/min). The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1), during a long-day inhibitory period (IG), and finally during a short-day stimulatory period (SG2). RESULTS: The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 +/- 0.07 mmHg/min(SG1), 11 min 1 sec, 0.38 +/- 0.06 mmHg/min (IG) and 9 min 0 sec, 0.72 +/- 0.15 mmHg/min (SG2). Time changes of IVP differed between groups (ANOVA, p < 0.005, SG1 different from IG, p < 0.05). The turnover rate in SG2: 183.16 +/- 23.82 mul/min was not significantly different from SG1: 169. 23 +/- 51.58 mul/min (Mann-Whitney test, p = 0.41), but was significantly different from IG: 71.33 +/- 16.59 mul/min (p = 0.016). CONCLUSION: This study shows that the turnover rate of CSF in ewes changes according to the light-dark cycle; it is increased during short day periods and reduced in long day periods. This phenomenon could account for differences in hormonal concentrations in the CSF in this seasonal species.

7.
Neuro Endocrinol Lett ; 29(4): 438-42, 2008 Aug.
Article En | MEDLINE | ID: mdl-18766153

OBJECTIVES: Previous studies in the female sheep have shown that photoperiod modulates the passage of sex steroids between the blood and the cerebrospinal fluid (CSF) and have suggested the involvement of efflux transport. The objective of the present work was to assess the presence of P-glycoprotein (Pgp), which could be responsible for this transport at the level of the choroid plexuses (CP). METHODS: We used flow cytometry and the UIC2 monoclonal antibody against Pgp, to demonstrate the presence of Pgp in the epithelial cell fraction isolated from the sheep choroid plexuses (CPEC). Thanks to the size of the brain structures in sheep, we analyse separately the CP from 4th ventricle (4V) and the CP from the lateral ventricle (LV). RESULTS: In the whole population isolated from the CP, the 4V contained a higher percentage of living, epithelial cells than the LV. The immunoreactive cells to the UIC2 antibody i.e. bearing activated form of Pgp, represented 26.8% of the CPEC in the 4V, and 39.3% in the LV (P<0.05). CONCLUSION: Pgp is expressed in the CPEC from the sheep. Differences in the expression of Pgp between CPEC from LV and 4V might suggest in vivo functional differences between LV and 4V CP in sheep.


ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Choroid Plexus/metabolism , Animals , Antibodies, Monoclonal/metabolism , Cerebral Ventricles/anatomy & histology , Cerebral Ventricles/metabolism , Choroid Plexus/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Flow Cytometry , Sheep
8.
Acta Neurobiol Exp (Wars) ; 68(3): 414-28, 2008.
Article En | MEDLINE | ID: mdl-18668165

The cerebrospinal fluid (CSF) is a major part of the extracellular fluid of the central nervous system. The function of the CSF and the tissue that secretes it, the choroid plexus (CP) has traditionally been thought as providing the brain with essential nutrients, removing products of neuronal activity of the central nervous system, and providing mechanical support for the brain's fragile cellular network. More recent studies suggest, however, that the CP and CSF system play a much more active role in the function of the central nervous system being a target, source and pathway for neuroendocrine signaling within the brain.


Brain/metabolism , Cerebrospinal Fluid/metabolism , Choroid Plexus/metabolism , Neurosecretory Systems/metabolism , Signal Transduction/physiology , Animals , Humans
9.
J Neurosci Methods ; 170(1): 56-66, 2008 May 15.
Article En | MEDLINE | ID: mdl-18276015

We developed a new technique of gene knockdown (KD) in a specific brain area of the ewe using an adeno-associated virus (AAV)-mediated short interfering RNA (siRNA) method to elucidate the importance of key factors of seasonal reproduction. Two 19-nucleotide sequences (TH1 or TH2) were chosen from the tyrosine hydroxylase (TH) gene. TH1, TH2 or a random sequence (TH3) was incorporated into an eGFP expressing AAV vector. Firstly, 5 microl of AAV-TH1 or AAV-TH2 solutions (8-9 x 10(11)Vg/ml) were stereotaxically injected into one A15 nucleus while the other received a control treatment. Ewes were killed after 15 or 75 days. The number of TH neurons was 49% and 36% lower on the AAV-TH1 treated side than on the control side 15 and 75 days post-injection, respectively. AAV-TH2 did not induce a significant variation in TH cell population. Finally, in order to increase the KD, two groups of ewes received 10 microl of AAV-TH1 either in a bolus injection or in two 5 microl inoculations carried out 2 weeks apart. Only ewes receiving a bolus injection showed a larger KD reaching 66% 2 months after inoculation. This method proved effective in reducing TH expression and will be further developed to understand cellular mechanisms driving seasonal functions.


Adenoviridae/genetics , Brain/enzymology , Gene Transfer Techniques , Optic Chiasm/enzymology , RNA, Small Interfering/pharmacology , Tyrosine 3-Monooxygenase/genetics , Animals , Animals, Genetically Modified , Brain/anatomy & histology , Female , Genetic Vectors , Green Fluorescent Proteins/genetics , Optic Chiasm/anatomy & histology , Ovariectomy , Reproduction/physiology , Seasons , Sheep
10.
J Neurosci Res ; 86(1): 202-7, 2008 Jan.
Article En | MEDLINE | ID: mdl-17722070

5-Hydroxyoxindole has been identified as a urinary metabolite of indole, which is produced from tryptophane via the tryptophanase activity of gut bacteria. We have demonstrated recently that 5-hydroxyoxindole is an endogenous compound in blood and tissues of mammals, including humans. To date, 5-hydroxyoxindole's role is unknown. The aim of this study was to compare 5-hydroxyoxindole levels in plasma and cerebrospinal fluid (CSF) during day-night and seasonal changes, as a common approach to pilot physiological characterization of any compound. Simultaneous blood and CSF sampling was performed in the ewe, because its size allows collection in quantities suitable for 5-hydroxyoxindole assay (HPLC-ED) in awake animals, without obvious physiological or behavioral disturbance. 5-Hydroxyoxindole concentration was quite stable in plasma (2-6 nM range), whereas, in CSF, it displayed marked day-night and photoperiodic variations (4-116 nM range). 5-Hydroxyoxindole levels in CSF were twofold higher at night than during the day and at least one order of magnitude higher during the long compared with the short photoperiod. These day/night and photoperiodic variations persisted after pinealectomy, indicating that 5-hydroxyoxindole rhythms in CSF are independent of melatonin formation. In conclusion, high levels of 5-hydroxyoxindole in the CSF during long photoperiod and its daily modulation suggest physiological involvement of 5-hydroxyoxindole in rhythmic adjustments in the brain, independently of the pineal gland.


Brain/metabolism , Indoles/cerebrospinal fluid , Animals , Chromatography, High Pressure Liquid/methods , Electrochemistry/methods , Female , Indoles/blood , Ovariectomy , Oxindoles , Photoperiod , Pineal Gland/physiology , Sheep , Statistics, Nonparametric
11.
J Pineal Res ; 41(4): 306-12, 2006 Nov.
Article En | MEDLINE | ID: mdl-17014687

In the ewe, seasonal anestrus results from an increased responsiveness of the hypothalamus to the negative feedback of estradiol (E2) on the gonadotropic axis under long-day conditions. However, this seasonal effect could also depend upon variable uptake of steroids by the brain. The aim of the present experiment was to compare the concentration of E2 in the blood plasma and in the cerebrospinal fluid (CSF) from the third ventricle in groups of ovariectomized, estradiol treated ewes maintained under short day (SD) or long day (LD) conditions and to study the involvement of the pineal gland in this photoperiodic regulation. Pinealectomized and sham-operated ewes were equipped with an intracerebral cannula to sample the CSF. The plasma E2 concentrations showed no difference between LD and SD in sham-operated and pinealectomized animals. In contrast, in the CSF, E2 concentration was higher in the LD than the SD group, and pinealectomy suppressed this effect of photoperiod. Concomitantly, the stimulatory effect of SD on luteinizing hormone levels observed in sham-operated ewes was abolished by pinealectomy. The results demonstrate that LD increases the E2 concentration in the CSF by a mechanism involving the pineal gland.


Estradiol/cerebrospinal fluid , Estradiol/radiation effects , Photoperiod , Pineal Gland/physiology , Pineal Gland/radiation effects , Animals , Estradiol/blood , Female , Luteinizing Hormone/blood , Luteinizing Hormone/cerebrospinal fluid , Melatonin/blood , Melatonin/cerebrospinal fluid , Ovariectomy , Pineal Gland/surgery , Sheep
12.
Reprod Biol ; 4(1): 91-106, 2004 Mar.
Article En | MEDLINE | ID: mdl-15154019

In female sheep, estradiol-dependent dopaminergic inhibition exerted by the A15 nucleus during long days (LD) results in a blockade of reproductive activity. This effect could involve the GnRH cell bodies or their terminals in the median eminence (ME). However, a vast majority of terminals of the A15 nucleus are located in neurohypophysis and only a few in the ME. Previously we demonstrated that tritiated dopamine (DA) was transferred from the venous blood of the cavernous sinus to the arterial blood supplying the brain. In the present paper, we tested the hypothesis that the transferred dopamine could reach further the brain and ME. Using isolated sheep heads harvested on short days vs. long days, we examined radioactivity in brain tissues following infusion of tritiated dopamine into the cavernous sinus. The experiment was performed in ovariectomized ewes treated with estradiol (E2) or vehicle. The mean level of radioactivity in brain was affected by season (p<0.001) and E2 (p<0.05) and was the highest during LD in E2-treated animals. In the next experiment on isolated sheep head we measured dopamine and its metabolites levels in blood and pituitary after infusion of non-radiolabeled dopamine. We observed an increase (p<0.01) in dopamine concentration in arterial blood but not in the brain. The pituitary was the only structure examined in which a tendency (p=0.06) towards increased dopamine concentration following dopamine infusion was observed. Thus, even if part of DA released from terminals within the posterior and intermediate lobes of the pituitary reaches the vessels of the ME through local vascular pathways, it is unlikely that it could affect the LHRH terminals located in ME. In addition, our results suggest that brain capillaries in the isolated head are able to maintain a functional blood brain barrier.


Blood-Brain Barrier/metabolism , Dopamine/blood , Median Eminence/metabolism , Sheep/metabolism , Analysis of Variance , Animals , Biological Transport , Catecholamines/blood , Estradiol/metabolism , Female , Seasons , Tritium
13.
Ann N Y Acad Sci ; 1007: 169-75, 2003 Dec.
Article En | MEDLINE | ID: mdl-14993051

Sheep in temperate latitudes are seasonal breeders. In female sheep, ovarian activity decreases during the anestrous period due to modification of secretion of luteinizing hormone (LH). The seasonal changes in the hormonal LH pattern mainly reflect an increase in the brain responsiveness to the negative feedback exerted by estradiol during long days (LD) on the frequency of pulsatile LH secretion, under neurohormonal GnRH control. The resulting seasonal inhibition of LH secretion mainly involves the activation of dopaminergic systems by E2, which in turn inhibits the GnRH cells from the preoptico-hypothalamic structures. The increased responsiveness of the brain during LD could lead to increased expression of central E2 receptors. In addition, our study shows that steroid access to the brain could be modulated by photoperiodism, thus increasing the availability of steroids to the nervous structures during LD.


Brain/physiology , Gonadal Steroid Hormones/physiology , Reproduction/physiology , Seasons , Sheep/physiology , Animals , Blood-Brain Barrier/physiology , Estradiol/physiology , Female , Luteinizing Hormone/physiology , Male , Photoperiod , Progesterone/physiology
...