Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Bone ; 185: 117125, 2024 Aug.
Article En | MEDLINE | ID: mdl-38754573

The traditional understanding of bone mechanosensation implicates osteocytes, canaliculi, and the lacunocanalicular network in biomechanical adaptation. However, recent findings challenge this notion, as shown in advanced teleost fish where anosteocytic bone lacking osteocytes are nevertheless responsive to mechanical load. To investigate specific molecular mechanisms involved in bone mechanoadaptation in osteocytic and anosteocytic fish bone, we conducted a 5-min single swim-training experiment with zebrafish and ricefish, respectively. Through RNASeq analysis of fish spines, analyzed at various time points following swim training, we uncovered distinct gene expression patterns in osteocytic and anosteocytic fish bones. Notably, osteocytic fish bone exhibited an early response to mechanical load, contrasting to a delayed response observed in anosteocytic fish bones, both within 8 h following stimulation. We identified an increase in osteoblast differentiation in anosteocytic bone following training, while chordoblast activity was delayed. This temporal response suggests a time-dependent adaptation in anosteocytic bone, indicating the presence of intricate feedback networks within bone that lacks osteocytes.


Osteocytes , Swimming , Zebrafish , Animals , Osteocytes/metabolism , Osteocytes/cytology , Zebrafish/genetics , Swimming/physiology , Bone and Bones/metabolism , Gene Expression Regulation , Physical Conditioning, Animal/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/genetics , Fishes/genetics
2.
Adv Sci (Weinh) ; 11(13): e2307050, 2024 Apr.
Article En | MEDLINE | ID: mdl-38273642

Bone fracture healing is regulated by mechanobiological cues. Both, extracellular matrix (ECM) deposition and microvascular assembly determine the dynamics of the regenerative processes. Mechanical instability as by inter-fragmentary shear or compression is known to influence early ECM formation and wound healing. However, it remains unclear how these external cues shape subsequent ECM and microvascular network assembly. As transcriptional coactivators, the mechanotransducers yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) translate physical cues into downstream signaling events, yet their role in sprouting angiogenesis into the hematoma after injury is unknown. Using bone healing as model system for scar-free regeneration, the role of endothelial YAP/TAZ in combination with tuning the extrinsic mechanical stability via fracture fixation is investigated. Extrinsically imposed shear across the gap delayed hematoma remodeling and shaped the morphology of early collagen fiber orientations and microvascular networks, suggesting that enhanced shear increased the nutrient exchange in the hematoma. In contrast, endothelial YAP/TAZ deletion has little impact on the overall vascularization of the fracture gap, yet slightly increases the collagen fiber deposition under semi-rigid fixation. Together, these data provide novel insights into the respective roles of endothelial YAP/TAZ and extrinsic mechanical cues in orchestrating the process of bone regeneration.


Hematoma , Mechanotransduction, Cellular , Collagen/metabolism , Mechanotransduction, Cellular/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Fracture Healing/physiology , Humans , Hematoma/metabolism , Hematoma/pathology , Bone and Bones/metabolism , Bone and Bones/pathology
3.
Article En | MEDLINE | ID: mdl-37917042

A modular tool box for photoresponsive cholesteric liquid crystals based on hydrogen-bonded assemblies is reported. By employing 3-azopyridines as photoswitch in cholesteric liquid-crystalline thin films, a fast and reversible blue shift is observed upon irradiation, allowing tuning of the structural color over the whole visible electromagnetic spectrum. Investigations of the materials via X-ray diffraction studies indicate that the blue shift is attributed to the photoinduced destruction of smectic clusters in the cholesteric phase, resulting in a contraction of the helical structure. Unprecedently, the use of a stereolithography 3D printer (SLA) allowed direct transfer of digital information into a multicolor photonic pattern, an important step toward photonic imaging and data storage.

4.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article En | MEDLINE | ID: mdl-33917250

Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton's tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD.


Acrylamides/administration & dosage , Bone Diseases/etiology , Bone Diseases/prevention & control , Multiple Myeloma/complications , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Stress, Mechanical , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Bone Diseases/pathology , Disease Models, Animal , Humans , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Osteolysis/etiology , Osteolysis/pathology , Osteolysis/prevention & control , X-Ray Microtomography
5.
Sci Rep ; 10(1): 22299, 2020 12 18.
Article En | MEDLINE | ID: mdl-33339872

Loss-of-function mutations in the Sost gene lead to high bone mass phenotypes. Pharmacological inhibition of Sost/sclerostin provides a new drug strategy for treating osteoporosis. Questions remain as to how physical activity may affect bone mass under sclerostin inhibition and if that effect differs between males and females. We previously observed in female Sost knockout (KO) mice an enhanced cortical bone formation response to a moderate level of applied loading (900 µÎµ at the tibial midshaft). The purpose of the present study was to examine cortical bone adaptation to the same strain level applied to male Sost KO mice. Strain-matched in vivo compressive loading was applied to the tibiae of 10-, 26- and 52-week-old male Sost KO and littermate control (LC) mice. The effect of tibial loading on bone (re)modeling was measured by microCT, 3D time-lapse in vivo morphometry, 2D histomorphometry and gene expression analyses. As expected, Sost deficiency led to high cortical bone mass in 10- and 26-week-old male mice as a result of increased bone formation. However, the enhanced bone formation associated with Sost deficiency did not appear to diminish with skeletal maturation. An increase in bone resorption was observed with skeletal maturation in male LC and Sost KO mice. Two weeks of in vivo loading (900 µÎµ at the tibial midshaft) induced only a mild anabolic response in 10- and 26-week-old male mice, independent of Sost deficiency. A decrease in the Wnt inhibitor Dkk1 expression was observed 3 h after loading in 52-week-old Sost KO and LC mice, and an increase in Lef1 expression was observed 8 h after loading in 10-week-old Sost KO mice. The current results suggest that long-term inhibition of sclerostin in male mice does not influence the adaptive response of cortical bone to moderate levels of loading. In contrast with our previous strain-matched study in females showing enhanced bone responses with Sost ablation, these results in males indicate that the influence of Sost deficiency on the cortical bone formation response to a moderate level of loading differs between males and females. Clinical studies examining antibodies to inhibit sclerostin may need to consider that the efficacy of additional physical activity regimens may be sex dependent.


Adaptor Proteins, Signal Transducing/genetics , Hyperostosis/genetics , Osteogenesis/genetics , Stress, Mechanical , Syndactyly/genetics , Animals , Bone Resorption/genetics , Bone Resorption/physiopathology , Bone and Bones/physiopathology , Cortical Bone/physiology , Female , Glycoproteins/genetics , Hyperostosis/physiopathology , Male , Mice , Mice, Knockout , Osteogenesis/physiology , Syndactyly/physiopathology
6.
Front Immunol ; 10: 797, 2019.
Article En | MEDLINE | ID: mdl-31031773

Bone formation as well as bone healing capacity is known to be impaired in the elderly. Although bone formation is outpaced by bone resorption in aged individuals, we hereby present a novel path that considerably impacts bone formation and architecture: Bone formation is substantially reduced in aged individual owing to the experience of the adaptive immunity. Thus, immune-aging in addition to chronological aging is a potential risk factor, with an experienced immune system being recognized as more pro-inflammatory. The role of the aging immune system on bone homeostasis and on the bone healing cascade has so far not been considered. Within this study mice at different age and immunological experience were analyzed toward bone properties. Healing was assessed by introducing an osteotomy, immune cells were adoptively transferred to disclose the difference in biological vs. chronological aging. In vitro studies were employed to test the interaction of immune cell products (cytokines) on cells of the musculoskeletal system. In metaphyseal bone, immune-aging affects bone homeostasis by impacting bone formation capacity and thereby influencing mass and microstructure of bone trabeculae leading to an overall reduced mechanical competence as found in bone torsional testing. Furthermore, bone formation is also impacted during bone regeneration in terms of a diminished healing capacity observed in young animals who have an experienced human immune system. We show the impact of an experienced immune system compared to a naïve immune system, demonstrating the substantial differences in the healing capacity and bone homeostasis due to the immune composition. We further showed that in vivo mechanical stimulation changed the immune system phenotype in young mice toward a more naïve composition. While this rescue was found to be significant in young individuals, aged mice only showed a trend toward the reconstitution of a more naïve immune phenotype. Considering the immune system's experience level in an individual, will likely allow one to differentiate (stratify) and treat (immune-modulate) patients more effectively. This work illustrates the relevance of including immune diagnostics when discussing immunomodulatory therapeutic strategies for the progressively aging population of the industrial countries.


Adaptive Immunity , Bone Regeneration , Bone Remodeling/immunology , Bone and Bones/immunology , Bone and Bones/metabolism , Homeostasis , Osteogenesis , Animals , Biomarkers , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Cell Differentiation , Cytokines/metabolism , Female , Humans , Mechanical Phenomena , Mice , Signal Transduction , Wound Healing , X-Ray Microtomography/methods
7.
J Bone Miner Res ; 33(9): 1686-1697, 2018 09.
Article En | MEDLINE | ID: mdl-29694687

During bone healing, tissue formation processes are governed by mechanical strain. Sost/sclerostin, a key Wnt signaling inhibitor and mechano-sensitive pathway, is downregulated in response to mechanical loading. Sclerostin neutralizing antibody (SclAb) increases bone formation. Nevertheless, it remains unclear whether sclerostin inhibition can rescue bone healing in situations of mechanical instability, which otherwise delay healing. We investigated SclAb's influence on tissue formation in a mouse femoral osteotomy, stabilized with rigid or semirigid external fixation. The different fixations allowed different magnitudes of interfragmentary movement during weight bearing, thereby influencing healing outcome. SclAb or vehicle (veh) was administeredand bone healing was assessed at multiple time points up to day 21 postoperatively by in vivo micro-computed tomography, histomorphometry, biomechanical testing, immunohistochemistry, and gene expression. Our results show that SclAb treatment caused a greater bone volume than veh. However, SclAb could not overcome the characteristic delayed healing of semirigid fixation. Indeed, semirigid fixation resulted in delayed healing with a prolonged endochondral ossification phase characterized by increased cartilage, lower bone volume fraction, and less bony bridging across the osteotomy gap than rigid fixation. In a control setting, SclAb negatively affected later stages of healing under rigid fixation, evidenced by the high degree of endosteal bridging at 21 days in the rigid-SclAb group compared with rigid-veh, indicating delayed fracture callus remodeling and bone marrow reconstitution. Under rigid fixation, Sost and sclerostin expression at the gene and protein level, respectively, were increased in SclAb compared with veh-treated bones, suggesting a negative feedback mechanism. Our results suggest that SclAb could be used to enhance overall bone mass but should be carefully considered in bone healing. SclAb may help to increase bone formation early in the healing process but not during advanced stages of fracture callus remodeling and not to overcome delayed healing in semirigid fixation. © 2018 American Society for Bone and Mineral Research.


Antibodies, Neutralizing/pharmacology , Fracture Healing/drug effects , Glycoproteins/immunology , Osteogenesis/drug effects , Adaptor Proteins, Signal Transducing , Animals , Blood Vessels/drug effects , Bony Callus/drug effects , Bony Callus/pathology , Female , Fracture Fixation , Gene Expression Regulation/drug effects , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Osteotomy , Up-Regulation/drug effects , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
8.
J Biomech ; 65: 145-153, 2017 Dec 08.
Article En | MEDLINE | ID: mdl-29108851

Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (GorabPrx1) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the GorabPrx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that GorabPrx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the GorabPrx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the GorabPrx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that GorabPrx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the GorabPrx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO.


Aging, Premature/diagnostic imaging , Bone Diseases/congenital , Dwarfism/diagnostic imaging , Skin Diseases, Genetic/diagnostic imaging , Tibia/diagnostic imaging , Adaptor Proteins, Vesicular Transport , Aging, Premature/physiopathology , Animals , Biomechanical Phenomena , Bone Density , Bone Diseases/diagnostic imaging , Bone Diseases/physiopathology , DNA-Binding Proteins , Disease Models, Animal , Dwarfism/physiopathology , Female , Fractures, Bone/genetics , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinases/genetics , Skin Diseases, Genetic/physiopathology , Tibia/physiopathology , X-Ray Microtomography
9.
Sci Rep ; 7(1): 9435, 2017 08 25.
Article En | MEDLINE | ID: mdl-28842678

Bone adaptation optimizes mass and structure, but the mechano-response is already reduced at maturation. Downregulation of sclerostin was believed to be a mandatory step in mechano-adaptation, but in young mice it was shown that load-induced formation can occur independent of sclerostin, a product of the Sost gene. We hypothesized that the bone formation and resorption response to loading is not affected by Sost deficiency, but is age-specific. Our findings indicate that the anabolic response to in vivo tibial loading was reduced at maturation in Sost Knockout (KO) and littermate control (LC) mice. Age affected all anabolic and catabolic parameters and altered Sost and Wnt target gene expression. While load-induced cortical resorption was similar between genotypes, loading-induced gains in mineralizing surface was enhanced in Sost KO compared to LC mice. Loading led to a downregulation in expression of the Wnt inhibitor Dkk1. Expression of Dkk1 was greater in both control and loaded limbs of Sost KO compared to LC mice suggesting a compensatory role in the absence of Sost. These data suggest physical activity could enhance bone mass concurrently with sclerostin-neutralizing antibodies, but treatment strategies should consider the influence of age on ultimate load-induced bone mass gains.


Cortical Bone/metabolism , Gene Expression Regulation , Glycoproteins/deficiency , Osteogenesis/genetics , Stress, Mechanical , Adaptor Proteins, Signal Transducing , Analysis of Variance , Animals , Calcification, Physiologic , Cortical Bone/diagnostic imaging , Cortical Bone/growth & development , Female , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Knockout , Models, Animal , X-Ray Microtomography
10.
Bone ; 55(2): 335-46, 2013 Aug.
Article En | MEDLINE | ID: mdl-23643681

Bone loss occurs during adulthood in both women and men and affects trabecular bone more than cortical bone. The mechanism responsible for trabecular bone loss during adulthood remains unexplained, but may be due at least in part to a reduced mechanoresponsiveness. We hypothesized that trabecular and cortical bone would respond anabolically to loading and that the bone response to mechanical loading would be reduced and the onset delayed in adult compared to postpubescent mice. We evaluated the longitudinal adaptive response of trabecular and cortical bone in postpubescent, young (10 week old) and adult (26 week old) female C57Bl/6J mice to axial tibial compression using in vivo microCT (days 0, 5, 10, and 15) and dynamic histomorphometry (day 15). Loading elicited an anabolic response in both trabecular and cortical bone in young and adult mice. As hypothesized, trabecular bone in adult mice exhibited a reduced and delayed response to loading compared to the young mice, apparent in trabecular bone volume fraction and architecture after 10 days. No difference in mechanoresponsiveness of the cortical bone was observed between young and adult mice. Finite element analysis showed that load-induced strain was reduced with age. Our results suggest that trabecular bone loss that occurs in adulthood may in part be due to a reduced mechanoresponsiveness in this tissue and/or a reduction in the induced tissue deformation which occurs during habitual loading. Therapeutic approaches that address the mechanoresponsiveness of the bone tissue may be a promising and alternate strategy to maintain trabecular bone mass during aging.


Bone Remodeling/physiology , Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Osteoporosis/diagnostic imaging , Osteoporosis/physiopathology , Animals , Female , Mice , Mice, Inbred C57BL , Radiography , Stress, Mechanical
11.
Phys Rev Lett ; 108(7): 075001, 2012 Feb 17.
Article En | MEDLINE | ID: mdl-22401215

We investigate the properties of a laser-plasma electron accelerator as a bright source of keV x-ray radiation. During the interaction, the electrons undergo betatron oscillations and from the carefully measured x-ray spectrum the oscillation amplitude of the electrons can be deduced which decreases with increasing electron energies. From the oscillation amplitude and the independently measured x-ray source size of (1.8±0.3) µm we are able to estimate the electron bunch diameter to be (1.6±0.3) µm.


Electrons , Lasers , Particle Accelerators , Scattering, Radiation , X-Rays
12.
J AOAC Int ; 90(6): 1623-7, 2007.
Article En | MEDLINE | ID: mdl-18193739

Through the application of a solid-phase dynamic extraction (SPDE) method for the determination of volatile substances, different parameters may influence the extraction and desorption process and are, therefore, vital for the determination of the extracted substances via gas chromatography (GC). In this study, the influence of extraction und desorption parameters of an SPDE-GC method for the determination of the d-limonene degradation products, namely, alpha-terpineol, (-)-carveol, and (S)-carvone, in an aqueous model system was evaluated using a factorial fractional design. The aim was to reduce the number of factors that should be considered for the optimization of an SPDE procedure for different applications. It could be shown that the extraction efficiency of alpha-terpineol, (-)-carveol, and (S)-carvone is significantly influenced by the extraction parameters incubation temperature, number of extraction strokes, and amount of added NaCl. All 3 parameters have a positive effect on the extraction and determination of the examined d-limonene degradation products. Due to the identification of significant factors on the basis of an experimental design, the results of this study can be very useful for further development of SPDE methods for different applications.


Cyclohexenes/isolation & purification , Terpenes/isolation & purification , Chromatography, Gas , Chromatography, High Pressure Liquid , Cyclohexane Monoterpenes , Cyclohexenes/chemistry , Indicators and Reagents , Limonene , Monoterpenes/analysis , Sodium Chloride/analysis , Temperature , Terpenes/chemistry
...