Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Acta Neuropathol ; 147(1): 91, 2024 May 21.
Article En | MEDLINE | ID: mdl-38772917

APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aß pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aß 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aß-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.


Alzheimer Disease , Apolipoprotein E4 , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Frontal Lobe/metabolism , Frontal Lobe/pathology , Genotype , Phosphorylation , Proteomics , tau Proteins/metabolism , tau Proteins/genetics
2.
Front Neurol ; 14: 1221775, 2023.
Article En | MEDLINE | ID: mdl-37521285

Introduction: Alzheimer's disease (AD) and epilepsy are reciprocally related. Among sporadic AD patients, clinical seizures occur in 10-22% and subclinical epileptiform abnormalities occur in 22-54%. Cognitive deficits, especially short-term memory impairments, occur in most epilepsy patients. Common neurophysiological and molecular mechanisms occur in AD and epilepsy. The choroid plexus undergoes pathological changes in aging, AD, and epilepsy, including decreased CSF turnover, amyloid beta (Aß), and tau accumulation due to impaired clearance and disrupted CSF amino acid homeostasis. This pathology may contribute to synaptic dysfunction in AD and epilepsy. Methods: We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3 neuropathology), and epilepsy autopsy cases (n = 12) using laser capture microdissection (LCM) followed by label-free quantitative mass spectrometry on the choroid plexus adjacent to the hippocampus at the lateral geniculate nucleus level. Results: Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false discovery rate (FDR), 616 proteins were differentially expressed in AD vs. control, 1 protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more variability in the epilepsy group across syndromes. The top 20 signaling pathways associated with differentially expressed proteins in AD vs. control included cell metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10-7, z = 3.00), and inhibited glycolysis (p = 1.00 x 10-12, z = -3.46). For AD vs. epilepsy, the altered pathways included cell metabolism pathways, activated complement system (p = 5.62 x 10-5, z = 2.00), and pathogen-induced cytokine storm (p = 2.19 x 10-2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls, 497 (81%) were positively correlated (p < 0.0001, R2 = 0.27). Discussion: We found altered signaling pathways in the choroid plexus of severe AD cases and many correlated changes in the protein expression of cell metabolism pathways in AD and epilepsy cases. The shared molecular mechanisms should be investigated further to distinguish primary pathogenic changes from the secondary ones. These mechanisms could inform novel therapeutic strategies to prevent disease progression or restore normal function. A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such as temporal lobe epilepsy, and changes across different severity levels in AD and epilepsy would add to our understanding.

3.
J Alzheimers Dis ; 87(1): 273-284, 2022.
Article En | MEDLINE | ID: mdl-35275545

BACKGROUND: The cellular and molecular alterations associated with synapse and neuron loss in Alzheimer's disease (AD) remain unclear. In transgenic mouse models that express mutations responsible for familial AD, neuronal and synaptic losses occur in populations that accumulate fibrillar amyloid-ß 42 (Aß42) intracellularly. OBJECTIVE: We aimed to study the subcellular localization of these fibrillar accumulations and whether such intraneuronal assemblies could be observed in the human pathology. METHODS: We used immunolabeling and various electron microscopy techniques on APP x presenilin1 - knock-in mice and on human cortical biopsies and postmortem samples. RESULTS: We found an accumulation of Aß fibrils in lipofuscin granule-like organelles in APP x presenilin1 - knock-in mice. Electron microscopy of human cortical biopsies also showed an accumulation of undigested material in enlarged lipofuscin granules in neurons from AD compared to age-matched non-AD patients. However, in those biopsies or in postmortem samples we could not detect intraneuronal accumulations of Aß fibrils, neither in the lipofuscin granules nor in other intraneuronal compartments. CONCLUSION: The intralysosomal accumulation of Aß fibrils in specific neuronal populations in APPxPS1-KI mice likely results from a high concentration of Aß42 in the endosome-lysosome system due to the high expression of the transgene in these neurons.


Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Humans , Lipofuscin/metabolism , Lysosomes/metabolism , Mice , Mice, Transgenic , Neurons/metabolism
4.
Cell ; 185(8): 1346-1355.e15, 2022 04 14.
Article En | MEDLINE | ID: mdl-35247328

Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.


Frontotemporal Dementia , Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Amyloid , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
5.
Acta Neuropathol ; 142(2): 259-278, 2021 08.
Article En | MEDLINE | ID: mdl-34095977

Microduplications of the 17q21.31 chromosomal region encompassing the MAPT gene, which encodes the Tau protein, were identified in patients with a progressive disorder initially characterized by severe memory impairment with or without behavioral changes that can clinically mimic Alzheimer disease. The unique neuropathological report showed a primary tauopathy, which could not be unanimously classified in a given known subtype, showing both 4R- and 3R-tau inclusions, mainly within temporal cortical subregions and basal ganglia, without amyloid deposits. Recently, two subjects harboring the same duplication were reported with an atypical extrapyramidal syndrome and gait disorder. To decipher the phenotypic spectrum associated with MAPT duplications, we studied ten carriers from nine families, including two novel unrelated probands, gathering clinical (n = 10), cerebrospinal fluid (n = 6), MRI (n = 8), dopamine transporter scan (n = 4), functional (n = 5), amyloid (n = 3) and Tau-tracer (n = 2) PET imaging data as well as neuropathological examination (n = 4). Ages at onset ranged from 37 to 57 years, with prominent episodic memory impairment in 8/10 patients, associated with behavioral changes in four, while two patients showed atypical extrapyramidal syndrome with gait disorder at presentation, including one with associated cognitive deficits. Amyloid imaging was negative but Tau imaging showed significant deposits mainly in both mesiotemporal cortex. Dopaminergic denervation was found in 4/4 patients, including three without extrapyramidal symptoms. Neuropathological examination exclusively showed Tau-immunoreactive lesions. Distribution, aspect and 4R/3R tau aggregates composition suggested a spectrum from predominantly 3R, mainly cortical deposits well correlating with cognitive and behavioral changes, to predominantly 4R deposits, mainly in the basal ganglia and midbrain, in patients with prominent extrapyramidal syndrome. Finally, we performed in vitro seeding experiments in HEK-biosensor cells. Morphological features of aggregates induced by homogenates of three MAPT duplication carriers showed dense/granular ratios graduating between those induced by homogenates of a Pick disease and a progressive supranuclear palsy cases. These results suggest that MAPT duplication causes a primary tauopathy associated with diverse clinical and neuropathological features.


Brain/pathology , Tauopathies/pathology , tau Proteins/metabolism , Adult , Age of Onset , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Female , Heterozygote , Humans , Inclusion Bodies/pathology , Male , Middle Aged , Tauopathies/metabolism , tau Proteins/genetics
6.
Acta Neuropathol ; 139(3): 443-461, 2020 03.
Article En | MEDLINE | ID: mdl-31822997

In Alzheimer's disease (AD), Tau and Aß aggregates involve sequentially connected regions, sometimes distantly separated. These alterations were studied in the pillar of the fornix (PoF), an axonal tract, to analyse the role of axons in their propagation. The PoF axons mainly originate from the subicular neurons and project to the mamillary body. Forty-seven post-mortem cases at various Braak stages (Tau) and Thal phases (Aß) were analysed by immunohistochemistry. The distribution of the lesions showed that the subiculum was affected before the mamillary body, but neither Tau aggregation nor Aß deposition was consistently first. The subiculum and the mamillary body contained Gallyas positive neurofibrillary tangles, immunolabelled by AT8, TG3, PHF1, Alz50 and C3 Tau antibodies. In the PoF, only thin and fragmented threads were observed, exclusively in the cases with neurofibrillary tangles in the subiculum. The threads were made of Gallyas negative, AT8 and TG3 positive Tau. They were intra-axonal and devoid of paired helical filaments at electron microscopy. We tested PoF homogenates containing Tau AT8 positive axons in a Tau P301S biosensor HEK cell line and found a seeding activity. There was no Aß immunoreactivity detected in the PoF. We could follow microcryodissected AT8 positive axons entering the mamillary body; contacts between Tau positive endings and Aß positive diffuse or focal deposits were observed in CLARITY-cleared mamillary body. In conclusion, we show that non-fibrillary, hyperphosphorylated Tau is transported by the axons of the PoF from the subiculum to the mamillary body and has a seeding activity. Either Tau aggregation or Aß accumulation may occur first in this system: this inconstant order is incompatible with a cause-and-effects relationship. However, both pathologies were correlated and intimately associated, indicating an interaction of the two processes, once initiated.


Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Fornix, Brain/pathology , Neural Pathways/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Disease Progression , Female , Fornix, Brain/metabolism , Humans , Male , Middle Aged , Neural Pathways/metabolism
7.
Acta Neuropathol ; 135(6): 839-854, 2018 06.
Article En | MEDLINE | ID: mdl-29696365

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.


Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Dendritic Spines/pathology , Dendritic Spines/physiology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Computer Simulation , Disease Models, Animal , Female , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Imaging, Three-Dimensional , Male , Membrane Potentials/physiology , Mice, Transgenic , Microscopy, Electron , Middle Aged , Models, Neurological , Presenilin-1/genetics , Presenilin-1/metabolism , Synapses/pathology , Tissue Culture Techniques
8.
J Neural Transm (Vienna) ; 124(6): 685-694, 2017 06.
Article En | MEDLINE | ID: mdl-28386671

Extracellular accumulation of Aß peptides and intracellular aggregation of hyperphosphorylated tau proteins are the two hallmark lesions of Alzheimer disease (AD). The senile plaque is made of a core of extracellular Aß surrounded by phospho-tau positive neurites. It includes multiple components such as axons, synapses, glial fibers and microglia. To visualize the relationships of those elements, an original technique was developed, based on the dilation of interstitial water during freezing. Samples of neocortex, hippocampus and striatum were taken from formalin-fixed brains (one control case; three cases with severe Alzheimer disease). The samples were subjected to various numbers of freezing/thawing cycles (from 0 to 320) with an automated system we devised. The samples were embedded in paraffin, cut and stained with haematoxylin-eosin or immunostained against Aß, phospho-tau, and antigens enriched in axons, synapses, macrophages or astrocytes. Microcryodissection induced the dissociation of tissue components, especially in the grey matter where the neuropil formed an oriented "mesh". The size of the empty spaces separating the fiber bundles and cells increased with the number of cycles. The amyloid core of the senile plaque separated from its neuritic crown at around 300 freezing/thawing cycles. The dissected core remained associated with macrophages containing Aß in their cytoplasm. Phospho-tau positive axons were distinctly seen projecting from the neuritic crown to the isolated amyloid core, where they ended in large synapses. The microcryodissection showed astrocytic processes stuck directly to the core. The original method we developed-microcryodissection-helped understanding how histological components were assembled in the tissue.


Alzheimer Disease/pathology , Brain/pathology , Cryopreservation/methods , Microdissection/methods , Plaque, Amyloid/pathology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Brain/metabolism , Female , Freezing , Humans , Immunohistochemistry , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Microscopy, Electron , Middle Aged , Neurons/metabolism , Neurons/pathology , Pattern Recognition, Automated , Plaque, Amyloid/metabolism , Water
...