Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311260, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634299

RESUMEN

Vapor-based deposition techniques are emerging approaches for the design of carbon-supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt-pCVD) approach is employed to deposit different Pt entities on mesoporous N-doped carbon (MPNC) nanospheres to design high-performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50-250) and deposition temperature (225-300 °C) are investigated. The Pt-pCVD process results in highly dispersed ultrasmall Pt clusters (≈1 nm in size) and Pt single atoms, while under certain conditions few larger Pt nanoparticles are formed. The best MPNC-Pt-pCVD electrocatalyst prepared in this work (250 pulses, 250 °C) reveals a Pt HER mass activity of 22.2 ± 1.2 A mg-1 Pt at -50 mV versus the reversible hydrogen electrode (RHE), thereby outperforming a commercially available Pt/C electrocatalyst by 40% as a result of the increased Pt utilization. Remarkably, after optimization of the Pt electrode loading, an ultrahigh Pt mass activity of 56 ± 2 A mg-1 Pt at -50 mV versus RHE is found, which is among the highest Pt mass activities of Pt single atom and cluster-based electrocatalysts reported so far.

2.
Angew Chem Int Ed Engl ; 63(28): e202404360, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676693

RESUMEN

Despite great progress in the construction of non-equilibrium systems, most approaches do not consider the structure of the fuel as a critical element to control the processes. Herein, we show that the amino acid side chains (A, F, Nal) in the structure of abiotic phosphates can direct assembly and reactivity during transient structure formation. The fuels bind covalently to substrates and subsequently influence the structures in the assembly process. We focus on the ways in which the phosphate esters guide structure formation and how structures and reactivity cross regulate when constructing assemblies. Through the chemical functionalization of energy-rich aminoacyl phosphate esters, we are able to control the yield of esters and thioesters upon adding dipeptides containing tyrosine or cysteine residues. The structural elements around the phosphate esters guide the lifetime of the structures formed and their supramolecular assemblies. These properties can be further influenced by the peptide sequence of substrates, incorporating anionic, aliphatic and aromatic residues. Furthermore, we illustrate that oligomerization of esters can be initiated from a single aminoacyl phosphate ester incorporating a tyrosine residue (Y). These findings suggest that activated amino acids with varying reactivity and energy contents can pave the way for designing and fabricating structured fuels.


Asunto(s)
Péptidos , Fosfatos , Fosfatos/química , Péptidos/química , Ésteres/química , Estructura Molecular
3.
J Am Chem Soc ; 145(48): 26086-26094, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992133

RESUMEN

Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.


Asunto(s)
Péptidos , Agua , Agua/química , Péptidos/química , Organofosfatos , Aminoácidos/química , Fosfatos/química , Ésteres
4.
J Funct Biomater ; 13(4)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36412879

RESUMEN

In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated with collagen. Four different coating methods were then applied: hydroxyapatite (HA) powder directly in the collagen coating, incubation in 10× SBF, coating with alkaline phosphatase (ALP), and coating with poly-L-aspartic acid. The results were compared by ESEM, µCT, TEM, and EDX. HA directly in the collagen solution resulted in a pH change and thus an increase in viscosity, leading to clumping on the scaffolds. As a function of incubation time in 10× SBF as well as in ALP, HA layer thickness increased, while no coating on the collagen layer was apparently observed with poly-L-aspartic acid. Only ultrathin sections and TEM with SuperEDX detected nano crystalline HA in the collagen layer. Exclusively the incubation in poly-L-aspartic acid led to HA crystals within the collagen coating compared to all other methods where the HA layers formed in different forms only at the collagen layer.

5.
Int J Nanomedicine ; 17: 5081-5097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340183

RESUMEN

Purpose: The conventional techniques for the preparation of reconstituted high-density lipoprotein (rHDL) are hampered by long process times, the need for large amounts of starting material, and harsh preparation conditions. Here, we present a novel rHDL preparation method to overcome these challenges. Furthermore, we propose a dual mode of action for rHDL loaded with the immunosuppressant drug everolimus (Eve-rHDL) in the context of atherosclerosis and cardiovascular disease. Methods: We use dual centrifugation for rHDL nanoparticle preparation and characterize the physicochemical properties by NS-TEM, N-PAGE, DLS, AF4, and HPLC. In addition, we determine the biological efficacy in human and murine cell culture with regard to cellular uptake, cholesterol efflux, and proliferation. Results: We confirm the characteristic particle size of 10 nm, discoidal morphology, and chemical composition of the rHDL preparations and identify dual centrifugation as an ideal method for cost-effective aseptic rHDL manufacturing. rHDL can be prepared in approx. 1.5 h with batch sizes as little as 89 µL. Moreover, we demonstrate the cholesterol efflux capacity and anti-proliferative activity of Eve-rHDL in vitro. The anti-proliferative effects were comparable to free Eve, thus confirming the suitability of rHDL as a capable drug delivery vehicle. Conclusion: Eve-rHDL shows great efficacy in vitro and may further be employed to target atherosclerotic plaques in vivo. Highly effective anti-atherosclerotic therapy might be feasible by reducing both inflammatory- and lipid burden of the plaques. Dual centrifugation is an ideal technique for the efficient application of the rHDL platform in cardiovascular disease and beyond.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Ratones , Humanos , Animales , Lipoproteínas HDL/química , Everolimus/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Colesterol , Centrifugación
6.
Materials (Basel) ; 15(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36013620

RESUMEN

In search of a new way to fabricate graphene-like materials, isostatic graphite targets were ablated using high peak power with a nanosecond-pulsed infrared laser. We conducted dry ablations in an argon atmosphere and liquid-phase ablations in the presence of a liquid medium (water or toluene). After the dry ablation, the SEM images of the target showed carbon in the form of a volcano-like grain structure, which seemed to be the result of liquid carbon ejected from the ablation center. No graphite exfoliation could be achieved using dry ablation. When using liquid phase ablation with water or toluene as a liquid medium, no traces of the formation of liquid carbon were found, but cleaner and deeper craters were observed. In particular, when using toluene as a liquid medium, typical graphite exfoliation was found. We believe that due to the extremely high pressure and high temperature induced by the laser pulses, toluene was able to intercalate into the graphite layers. Between the laser pulses, the intercalated toluene was able to flash evaporate and blow-up the graphite, which resulted in exfoliated graphite. Exfoliated graphite was found on the ablated graphite surface, as well as in the toluene medium. The ablation experiments with toluene undertaken in this study demonstrated an effective method of producing micrometer-sized graphene material. When using water as a liquid medium, no massive graphite exfoliation was observed. This meant that under the used laser conditions, toluene was a better intercalant for graphite exfoliation than water.

7.
Acta Biomater ; 146: 274-283, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487427

RESUMEN

Osteoarthritis (OA) is a joint disease affecting millions of patients worldwide. During OA onset and progression, the articular cartilage is destroyed, but the underlying complex mechanisms remain unclear. Here, we uncover changes in the thickness of collagen fibers and their composition at the onset of OA. For articular cartilage explants from knee joints of OA patients, we find that type I collagen-rich fibrocartilage-like tissue was formed in macroscopically intact cartilage, distant from OA lesions. Importantly, the number of thick fibers (>100 nm) has decreased early in the disease, followed by complete absence of thick fibers in advanced OA. We have obtained these results by a combination of high-resolution atomic force microscopy imaging under near-native conditions, immunofluorescence, scanning electron microscopy and a fluorescence-based classification of the superficial chondrocyte spatial organization. Taken together, our data suggests that the loss of tissue functionality in early OA cartilage is caused by a reduction of thick type II collagen fibers, likely due to the formation of type I collagen-rich fibrocartilage, followed by the development of focal defects in later OA stages. We anticipate that such an integrative characterization will be very beneficial for an in-depth understanding of other native biological tissues and the development of sustainable biomaterials. STATEMENT OF SIGNIFICANCE: In early osteoarthritis (OA) the cartilage appears macroscopically intact. However, this study demonstrates that the collagen network already changes in early OA by collagen fiber thinning and the formation of fibrocartilage-like tissue. Both nanoscopic deficiencies already occur in macroscopically intact regions of the human knee joint and are likely connected to processes that result in a weakened extracellular matrix. This study enhances the understanding of earliest progressive cartilage degeneration in the absence of external damage. The results suggest a determination of the mean collagen fiber thickness as a new target for the detection of early OA and a regulation of type I collagen synthesis as a new path for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Cartílago Articular/patología , Condrocitos/fisiología , Colágeno Tipo I , Colágeno Tipo II , Humanos , Osteoartritis/patología
8.
Materials (Basel) ; 13(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126719

RESUMEN

The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox-Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ - K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.

9.
Polymers (Basel) ; 12(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036354

RESUMEN

Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15-20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2-8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields.

10.
Macromol Rapid Commun ; 40(11): e1900015, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30892758

RESUMEN

Ultrathin single crystal γ-Al(OH)3 (Gibbsite) nanoplatelets with average thickness <20 nm and length <800 nm, pretreated with trimethylaluminum (TMA), represent highly efficient activators and supports bis(imino)pyridine iron (II) (FeBIP) complex to produce high density polyethylene (HDPE) as well as gibbsite/HDPE nanocomposites in exceptionally high yields. Opposite to both methylaluminoxane (MAO)-activated homogeneous FeBIP catalyst and heterogenous silica-supported single site catalysts, no addition of MAO is required. At low TMA/Fe = 50 molar ratio, the superior catalyst activity (up to 6500 kg mol-1 h-1 bar-1 ) of FeBIP@TMA@Gibbsite is paralleled by controlled polyethylene particle growth without encountering reactor-fouling problems typical for homogeneous catalysts. TMA@Gibbsite is compared with other AlR3 @Gibbsite activators. The Al/Fe molar ratio governs catalyst activity as well as molar mass, molar mass distribution, and thermal properties of polyethylene. Moreover, hexagonal gibbsite nanoplatelets are uniformly dispersed in polyethylene to yield agglomerate-free polyethylene/gibbsite nanocomposites.


Asunto(s)
Etilenos/química , Hierro/química , Nanocompuestos/química , Nanotecnología/métodos , Polímeros/química , Catálisis
11.
Nanoscale ; 10(4): 1877-1884, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29313048

RESUMEN

In this work, reduced graphene oxide (rGO) based electrode materials were developed to achieve a hybrid supercapacitor (SC) function. Therefore, several synthesis methods were developed to prepare a cost effective and environmentally friendly rGO. Additionally, to maintain the high surface area, spinel lithium titanate (sLTO) nanoparticles (NPs) were synthesized and deposited on the rGO surface to inhibit the restacking of the rGO layers on graphite. Furthermore, the adequate Fe-doping of sLTO increased the ionic conductivity and the intercalation capacity, which is necessary for a SC performance. The sLTO/rGO-composites were electrochemically analysed by chronopotentiometry and electrochemical impedance spectroscopy (EIS) to determine the stability during charge/discharge cycling and the capacity, respectively. To overcome the drawback of LTO's low conductivity values, its value has been drastically increased by Fe-doping. The results demonstrated the remarkable cycling performance of the Fe:LTO/rGO composite as well as a higher capacity compared to LTO/rGO and pure rGO-electrodes. The thermal stability, degradation and weight loss of the sLTO/rGO in the temperature range between 20 °C and 800 °C were investigated by thermogravimetry (TG)/DTA. As a conclusion, it can be stated that, increasing the ionic conductivity by Fe-doping drastically increases the hybrid capacity of the SC electrodes.

12.
Materials (Basel) ; 11(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271932

RESUMEN

The use of both bioglass (BG) and ß tricalcium phosphate (ß-TCP) for bone replacement applications has been studied extensively due to the materials' high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinations of a composite BG and ß-TCP powder for 3D printing of porous bone scaffolds. Porous 3D powder printed bone scaffolds of BG, ß-TCP, 50/50 BG/ß-TCP and 70/30 BG/ß-TCP compositions were subject to a variety of characterization and biocompatibility tests. The porosity characteristics, surface roughness, mechanical strength, viability for cell proliferation, material cytotoxicity and in vitro bioactivity were assessed. The results show that the scaffolds can support osteoblast-like MG-63 cells growth both on the surface of and within the scaffold material and do not show alarming cytotoxicity; the porosity and surface characteristics of the scaffolds are appropriate. Of the two tested composite materials, the 70/30 BG/ß-TCP scaffold proved to be superior in terms of biocompatibility and mechanical strength. The mechanical strength of the scaffolds makes them unsuitable for load bearing applications. However, they can be useful for other applications such as bone fillers.

13.
Adv Mater ; 29(35)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714191

RESUMEN

The interplay between noncollagenous proteins and biomineralization is widely accepted, yet the contribution of their secondary structure in mineral formation remains to be clarified. This study demonstrates a role for phosvitin, an intrinsically disordered phosphoprotein, in chick embryo skeletal development, and using circular dichroism and matrix least-squares Henderson-Hasselbalch global fitting, unravels three distinct pH-dependent secondary structures in phosvitin. By sequestering phosvitin on a biomimetic 3D insoluble cationic framework at defined pHs, access is gained to phosvitin in various conformational states. Induction of biomimetic mineralization at near physiological conditions reveals that a disordered secondary structure with a low content of PII helix is remarkably efficient at promoting calcium adsorption, and results in the formation of biomimetic hydroxyapatite through an amorphous calcium phosphate precursor. By extending this finding to phosphorylated full-length human recombinant dentin matrix protein-1 (17-513 AA), this bioinspired approach provides compelling evidence for the role of a disordered secondary structure in phosphoproteins in bone-like apatite formation.


Asunto(s)
Fosfoproteínas/química , Adsorción , Animales , Apatitas , Biomimética , Embrión de Pollo , Pollos , Durapatita , Humanos
14.
ACS Nano ; 10(8): 8087-96, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27482842

RESUMEN

Compatibilization of an immiscible binary blend comprising a conjugated electron donor and a conjugated electron acceptor polymer with suitable electronic properties upon addition of a block copolymer (BCP) composed of the same building blocks is demonstrated. Efficient compatibilization during melt-annealing is feasible when the two polymers are immiscible in the melt, i.e. above the melting point of ∼250 °C of the semicrystalline donor polymer P3HT. To generate immiscibility at these high temperatures, the acceptor polymer PCDTBT is equipped with fluorinated side chains leading to an increased Flory-Huggins interaction parameter. Compatibilization in bulk and thin films is demonstrated, showing that the photovoltaic performance of pristine microphase separated and nanostructured BCPs can also be obtained for compatibilized blend films containing low contents of 10-20 wt % BCP. Thermodynamically stable domain sizes range between several tens of microns for pure blends and ∼10 nm for pure block copolymers. In addition to controlling domain size, the amount of block copolymer added dictates the ratio of edge-on and face-on P3HT crystals, with compatibilized films showing an increasing amount of face-on P3HT crystals with increasing amount of compatibilizer. This study demonstrates the prerequisites and benefits of compatibilizing all-conjugated semicrystalline polymer blends for organic photovoltaics.


Asunto(s)
Nanoestructuras , Polímeros
15.
Nanoscale ; 8(18): 9682-7, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108994

RESUMEN

To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn(-)) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively "heal" the oxygen vacancy (VO(+)) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.

16.
Nanomedicine (Lond) ; 11(9): 1017-30, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26983681

RESUMEN

AIM: We synthesized ultra-small iron oxide nanoparticles (USPIONs) with tripod morphology and studied the effect of the aspect ratio (AR) of the tripod arms on mass magnetization, T2 relaxation and cytocompatibility in human cell lines. MATERIALS & METHODS: Tripods were prepared by controlling the temperature during the thermal decomposition of Fe(CO)5, and their magnetic properties were characterized by superconducting quantum interference device, and NMR. Citric acid stabilized USPIONs were used to assess cytocompatibility. RESULTS: T2 relaxivity of tripods showed dependency on AR of the tripod arm. Liver enzyme levels in presence of tripods were comparable to spherical USPIONs, and surprisingly tripods induced lower levels of reactive oxygen species. CONCLUSION: Tripod USPIONs with high AR arms possess excellent magnetic properties and cytocompatibility for further exploration as MRI contrast agents.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Medios de Contraste/química , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Línea Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/uso terapéutico , Medios de Contraste/síntesis química , Medios de Contraste/uso terapéutico , Compuestos Férricos/química , Compuestos Férricos/uso terapéutico , Humanos , Nanopartículas de Magnetita/uso terapéutico , Tamaño de la Partícula
17.
Dent Mater ; 31(11): 1415-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26429505

RESUMEN

OBJECTIVES: Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. METHODS: Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (µCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. RESULTS: All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). SIGNIFICANCE: A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants.


Asunto(s)
Pilares Dentales , Diseño de Implante Dental-Pilar , Implantes Dentales , Microscopía Electrónica de Rastreo , Titanio
18.
Eur J Pharm Biopharm ; 88(3): 807-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25301294

RESUMEN

The aim of the present study was to develop film-coated tablets which release a minor amount of the active pharmaceutical ingredient (API) into the stomach and small intestine, yet show a sharp increase of drug release in the colon. Tablets containing the model drug Diclofenac-Na, microcrystalline cellulose as a filler (MT), as well as tablets consisting of Ludiflash® (LT), both were used as tablet cores, respectively. Either chitosan (CHI) alone or different ratios of chitosan and Kollicoat® Smartseal 30 D (KCSS) were applied onto these cores. The resulting film-coated tablets were analyzed for swelling, drug dissolution and stability. In order to clarify whether the colon release is mainly enzyme-driven or pressure-controlled, the coated tablets were both tested in the colon microflora test (CMT), which simulates the enzyme environment within the colon, and using a bio-relevant dissolution apparatus mimicking the intraluminal pressures and stress conditions present in the gastrointestinal tract (GIT). CHI/KCSS (25:75) coated LTs showed a pressure-controlled site-specific drug release in the large intestine, while remaining intact in the upper GIT. CHI as well as CHI/KCSS (25:75) applied onto MTs, remained stable during the entire simulated bio-relevant dissolution transit of the GIT, but showed enzymatically controlled colon targeting in the CMT. These results could be confirmed for CHI/KCSS (25:75) film-coated MTs top-coated with an additional hydroxypropylmethylcellulose (HPMC) layer and an Eudragit L 30 D-55 (EUL) layer to avoid the dissolution in the fasting stomach.


Asunto(s)
Quitosano/administración & dosificación , Colon/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Polivinilos/administración & dosificación , Animales , Quitosano/química , Quitosano/metabolismo , Colon/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Metacrilatos/administración & dosificación , Metacrilatos/química , Metacrilatos/metabolismo , Polímeros/administración & dosificación , Polímeros/química , Polímeros/metabolismo , Polivinilos/química , Polivinilos/metabolismo , Porcinos , Comprimidos Recubiertos
19.
ACS Appl Mater Interfaces ; 6(3): 1576-82, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24392784

RESUMEN

Catalytically synthesized methanol from H2 and CO2 using porous Cu/ZnO aggregates is a promising, carbon neutral, and renewable alternative to replace fossil fuel based transport fuels. However, the absence of surface-engineered model systems to understand and improve the industrial Cu/ZnO catalyst poses a big technological gap in efforts to increase industrial methanol conversion efficiency. In this work, we report a novel process for the fabrication of patterned, vertically aligned high aspect ratio 1D nanostructures on Si that can be used as an engineered model catalyst. The proposed strategy employs near-field phase shift lithography (NF-PSL), deep reactive ion etching (DRIE), and atomic layer deposition (ALD) to pattern, etch, and coat Si wafers to produce high aspect ratio 1D nanostructures. Using this method, we produced a model system consisting of high aspect ratio Cu-decorated ZnO nanotubes (NTs) to investigate the morphological effects of ZnO catalyst support in comparison to the planar Cu/ZnO catalyst in terms of the catalytic reactions. The engineered catalysts performed 70 times better in activating CO2 than the industrial catalyst. In light of the obtained results, several important points are highlighted, and recommendations are made to achieve higher catalytic performance.

20.
Macromol Rapid Commun ; 34(15): 1249-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23836705

RESUMEN

Graphene functionalization by hydroxyalkylation and grafting with polyether polyols enables polyurethane (PU) nanocomposites formation by in situ polymerization with isocyanates combined with effective covalent interfacial coupling. Functionalized graphene (FG) hydroxylation is achieved either by alkylation, transesterification, or grafting of thermally reduced graphite oxide. In the presence of K2 CO3 as catalyst the reaction of FG-OH with ethylene carbonate at 180 °C affords hydroxyethylated FG, whereas transesterification with castor oil produces riconoleiate-modified FG polyols. In the "grafting-from" process, FG-alkoholate macro initiators initiate the graft polymerization of propylene oxide to produce hybrid FG polyols containing 38 and 59 wt% oligopropylene oxide. In the "grafting-to" process 3-ethyl-3-hydroxymethyl-oxetane is cationically polymerized onto FG-OH, producing novel hyperbranched FG-based polyether polyols. Whereas hydroxylation and grafting of FG greatly improve FG dispersion in organic solvents, polyols and even PU, as confirmed by transmission electron microscopy, matrix reinforcement of FG/PU is impaired by increasing alkyl chain length and polyol graft copolymer content.


Asunto(s)
Grafito/química , Nanocompuestos/química , Polímeros/síntesis química , Poliuretanos/química , Alquilación , Carbonatos/química , Catálisis , Hidroxilación , Polímeros/química , Potasio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...