Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(10): e202400289, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38503687

RESUMEN

Furfural is an industrially relevant biobased chemical platform. Unlike classical furan, or C-alkylated furans, which have been previously described in the current literature, the =C5H bond of furfural is unreactive. As a result, on a large scale, C=C and C=O bond hydrogenation/hydrogenolysis is mainly performed, with furfuryl alcohol and methyl tetrahydrofuran being the two main downstream chemicals. Here, we show that the derivatization of the -CHO group of furfural restores the reactivity of its =C5H bond, thus permitting its double condensation on various alkyl aldehydes. Overcoming the recalcitrance of the =C5H bond of furfural has opened an access to a biobased monomer, whose potential have been investigated in the fabrication of renewably-sourced poly(silylether). By means of a combined theoretical-experimental study, a reactivity scale for furfural and its protected derivatives against carbonylated compounds has been established using an electrophilicity descriptor, a means to predict the molecular diversity and complexity this pathway may support, and also to de-risk any project related to this topic. Finally, by using performance criteria for industrial operations in the field of fuels and commodities, we discussed the industrial potential of this work in terms of cost, E-factor, reactor productivity and catalyst consumption.

2.
Angew Chem Int Ed Engl ; 63(12): e202319414, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38295149

RESUMEN

Efficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.

3.
Chemphyschem ; 24(15): e202300182, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170881

RESUMEN

We demonstrate that the strong N2 bond can be efficiently dissociated at low pressure and ambient temperature on a Si(111)-7x7 surface. The reaction was experimentally investigated by scanning tunnelling microscopy and X-ray photoemission spectroscopy. Experimental and density functional theory results suggest that relatively low thermal energy collision of N2 with the surface can facilitate electron transfer from the Si(111)-7x7 surface to the π*-antibonding orbitals of N2 that significantly weaken the N2 bond. This activated N2 triple bond dissociation on the surface leads to the formation of a Si3 N interface.

4.
Chem Sci ; 14(2): 362-371, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36687351

RESUMEN

The in vitro to in vivo translation of metal-based cytotoxic drugs has proven to be a significant hurdle in their establishment as effective anti-cancer alternatives. Various nano-delivery systems, such as polymeric nanoparticles, have been explored to address the pharmacokinetic limitations associated with the use of these complexes. However, these systems often suffer from poor stability or involve complex synthetic procedures. To circumvent these problems, we report here a simple, one-pot procedure for the preparation of covalently-attached Ru-polylactide nanoparticles. This methodology relies on the ring-opening polymerization of lactide initiated by a calcium alkoxide derivative formed from calcium bis(trimethylsilyl amide) and a hydroxyl-bearing ruthenium complex. This procedure proceeds with high efficiency (near-quantitative incorporation of Ru in the polymer) and enables the preparation of polymers with varying molecular weights (2000-11000 Da) and high drug loadings (up to 68% w/w). These polymers were formulated as narrowly dispersed nanoparticles (110 nm) that exhibited a slow and predictable release of the ruthenium payload. Unlike standard encapsulation methods routinely used, the release kinetics of these nanoparticles is controlled and may be adjusted on demand, by tuning the size of the polymer chain. In terms of cytotoxicity, the nanoparticles were assessed in the ovarian cancer cell line A2780 and displayed potency comparable to cisplatin and the free drug, in the low micromolar range. Interestingly, the activity was maintained when tested in a cisplatin-resistant cell line, suggesting a possible orthogonal mechanism of action. Additionally, the internalization in tumour cells was found to be significantly higher than the free ruthenium complex (>200 times in some cases), clearly showcasing the added benefit in the drug's cellular permeation and accumulation of the drug. Finally, the in vivo performance was evaluated for the first time in mice. The experiments showed that the intravenously injected nanoparticles were well tolerated and were able to significantly improve the pharmacokinetics and biodistribution of the parent drug. Not only was the nanosystem able to promote an 18-fold increase in tumour accumulation, but it also allowed a considerable reduction of drug accumulation in vital organs, achieving, for example, reduction levels of 90% and 97% in the brain and lungs respectively. In summary, this simple and efficient one-pot procedure enables the generation of stable and predictable nanoparticles capable of improving the cellular penetration and systemic accumulation of the Ru drug in the tumour. Altogether, these results showcase the potential of covalently-loaded ruthenium polylactide nanoparticles and pave the way for its exploitation and application as a viable tool in the treatment of ovarian cancer.

5.
Acc Chem Res ; 55(16): 2168-2179, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35881825

RESUMEN

Almost all aspects of daily life involve polymers in some form or the other. However, polymer production is largely based on finite feedstocks. These limitations combined with environmental concerns force us to rethink the strategies for the synthesis of these materials. As an abundant and renewable resource, biomass is composed of a very diverse range of molecules that deserve to be valorized. The development of new methods for transforming biomass into resources suitable for polymer production remains a crucial hurdle on the road to a more sustainable chemical economy. The main challenge is to design efficient and selective transformations of abundant and inexpensive raw materials into innovative polymers. For the chemical industry to meet these challenges, process intensification must play an important role in developing cleaner and more energy-efficient technologies while aiming for safer and more sustainable processes. Catalysis is an important tool to support more sustainable plastics production by being ideally efficient, practical, and versatile. In this regard, the creation of sustainable polymers through one-pot catalysis represents an exciting frontier in materials science.In this Account, we describe some of the published advances for achieving one-pot synthesis of biobased monomers and the resulting (co)polymers. These studies demonstrate that one-pot reactions can produce sustainable materials for a wide range of applications. We show that these new multistep "one-pot" approaches are very promising from an academic and industrial point of view. These synthetic schemes have indeed allowed us to investigate the formation of new polyesters, polypeptides, and poly(meth)acrylates by different polymerization mechanisms. We discuss their efficiency by highlighting their ability to perform multiple (quantitative) synthetic transformations and bond formation steps while bypassing multiple purification procedures at the same time. While enabling the development of novel polymeric structures, we demonstrate that these one-pot procedures can also contribute to reducing the environmental footprint.In light of the growing concerns for sustainable development, these procedures may therefore allow, in the near future, one to prepare sustainable polymeric materials with advanced properties through extremely simplified routes from renewable feedstocks. Among these materials, block and alternating copolymers are unique structures that can exhibit a wide range of properties. While their multistep synthesis remains a demanding process, the one-pot synthesis of these polymers is much more scalable and can create multiblock or alternating copolymers with a wide range of potential sequences. These approaches then give access to materials whose structure and functionality can be designed to suit the need.


Asunto(s)
Poliésteres , Polímeros , Biomasa , Catálisis , Polimerizacion , Polímeros/química
6.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807313

RESUMEN

The most versatile furanic building block for chemical and polymer applications is 2,5-furandicarboxylic acid. However, the classical 2,5-furandicarboxylic acid production methodology has been found to have significant drawbacks that hinder industrial-scale production. This review highlights new alternative methods to synthesize 2,5-furandicarboxylic acid that are both more advantageous and attractive than conventional oxidation of 5-hydroxymethylfurfural. This review also focuses on the use of 2,5-furandicarboxylic acid as a polymer precursor and the various potential applications that arise from these furan-based materials.


Asunto(s)
Ácidos Dicarboxílicos , Polímeros , Furanos , Oxidación-Reducción
7.
Angew Chem Int Ed Engl ; 61(7): e202113443, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34902211

RESUMEN

The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual-functional biobased building blocks such as 5-hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from -60 to 29 °C), stable upon heating (T-5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid-catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.

8.
Chem Soc Rev ; 50(24): 13587-13608, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34786575

RESUMEN

This review highlights recent developments in the field of biodegradable polymeric materials intended to replace non-degradable conventional plastics, focusing on studies from the last ten years involving the stereoselective ring-opening polymerization of cyclic esters. This encompasses exciting advances in both catalyst design and monomer scope. Notably, the last decade has seen the emergence of metal-free stereocontrolled ROP for instance, as well as the synthesis and stereocontrolled polymerization of new types of chiral monomers. This study will emphasize recent stereoselective polymerization catalysts and chiral monomers and will focus on stereocontrol quantification, the mechanisms of stereocontrol and their differentiation if reported and studied for a specific catalyst system.


Asunto(s)
Poliésteres , Polímeros , Catálisis , Ésteres , Polimerizacion
9.
J Am Chem Soc ; 143(33): 13401-13407, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379408

RESUMEN

A [Ni/Mg]-catalyzed orthogonal tandem polymerization has been developed starting from enol phosphates. Initial investigations conducted on branched 1,3-dienes as monomers enabled identification of a Mg-initiated polymerization process leading to 1,4-cis-polydienes. When aryl enol phosphates are used as monomers, the [Ni/Mg]-catalyzed tandem polymerization affords 1,4-cis-polydienes with selectivities up to 99%. Elastomeric or crystalline materials were obtained by simple structural modifications of the monomeric unit. This tandem approach appears as a straightforward and efficient way to enforce diversity and selectivity in diene polymerization while retaining a fair degree of control, just as observed for stepwise systems that are accessible through established time- and manpower-consuming synthetic procedures.

10.
Angew Chem Int Ed Engl ; 60(35): 19374-19382, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34152679

RESUMEN

Shifting from petrochemical feedstocks to renewable resources can address some of the environmental issues associated with petrochemical extraction and make plastics production sustainable. Therefore, there is a growing interest in selective methods for transforming abundant renewable feedstocks into monomers suitable for polymer production. Reported herein are one-pot catalytic systems, that are active, productive, and selective under mild conditions for the synthesis of copolymers from renewable materials. Each system allows for anhydride formation, alcohol acylation and/or acid esterification, as well as polymerization of the formed (meth)acrylates, providing direct access to a new library of unique poly(meth)acrylates.

11.
Macromol Rapid Commun ; 42(3): e2000530, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33433958

RESUMEN

To prepare biobased polymers, particular attention must be paid to the obtention of the monomers from which they are derived. (Meth)acrylates and their analogs constitute such a class of monomers that have been extensively studied due to the wide range of polymers accessible from them. This review therefore aims to highlight the progresses made in the production and polymerization of (meth)acrylates and their analogs. Acrylic acid production from biomass is close to commercialization, as three different high-potential intermediates are identified: glycerol, lactic acid, and 3-hydroxypropionic acid. Biobased methacrylic acid is less common, but several promising options are available, such as the decarboxylation of itaconic acid or the dehydration of 2-hydroxyisobutyric acid. Itaconic acid is also a vinylic monomer of great interest, and polymers derived from it have already found commercial applications. Methylene butyrolactones are promising monomers, obtained from bioresources via three different intermediates: levulinic, succinic, or itaconic acid. Although expensive, methylene butyrolactones have a strong potential for the production of high-performance polymers. Finally, ß-substituted acrylic monomers, such as cinnamic, fumaric, muconic, or crotonic acid, are also examined, as they provide an original access to biobased materials from various renewable raw materials, such as protein waste, lignin, or wastewater.


Asunto(s)
Acrilatos , Polímeros , Lignina , Polimerizacion
12.
Nanoscale ; 13(1): 349-354, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33346311

RESUMEN

Over the past decade, on-surface fabrication of organic nanostructures has been widely investigated for the development of molecular electronic components, catalysts, and new materials. Here, we introduce a new strategy to obtain alkyl oligomers in a controlled manner using on-surface radical oligomerisations that are triggered by electrons between the tip of a scanning tunnelling microscope and the Si(111)√3 ×√3 R30°-B surface. This electron transfer event only occurs when the bias voltage is below -4.5 V and allows access to reactive radical species under exceptionally mild conditions. This transfer can effectively 'switch on' a sequence leading to the formation of oligomers of defined size distribution thanks to the on-surface confinement of the reactive species. Our approach enables new ways to initiate and control radical oligomerisations with tunnelling electrons, leading to molecularly precise nanofabrication.

13.
Adv Mater ; 32(47): e2003294, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33073433

RESUMEN

Ru(II) polypyridyl complexes are compounds of great interest in cancer therapy due to their unique photophysical, photochemical, and biological properties. For effective treatment, they must be able to penetrate tumor cells effectively and selectively. The development of nanoscale carriers capable of delivering Ru(II) polypyridyl complexes has the potential to passively or selectively enhance their cellular uptake in tumor cells. Many different strategies have been explored to incorporate Ru(II) polypyridyl complexes into a variety of nanosized constructs, ranging from organic to inorganic materials. Herein, recent developments in nanomaterials loaded with Ru(II) polypyridyl complexes are highlighted. Their rational design, preparation, and physicochemical properties are described, and their potential applications in cancer therapy are eventually discussed.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Nanomedicina/métodos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Piridinas/química , Rutenio/química , Animales , Humanos
14.
Pharmaceutics ; 12(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066200

RESUMEN

Antimicrobial photodynamic therapy (aPDT) also known as photodynamic inactivation (PDI) is a promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria. This therapy relies on the use of a molecule called photosensitizer capable of generating, from molecular oxygen, reactive oxygen species including singlet oxygen under light irradiation to induce bacteria inactivation. Ru(II) polypyridyl complexes can be considered as potential photosensitizers for aPDT/PDI. However, to allow efficient treatment, they must be able to penetrate bacteria. This can be promoted by using nanoparticles. In this work, ruthenium-polylactide (RuPLA) nanoconjugates with different tacticities and molecular weights were prepared from a Ru(II) polypyridyl complex, RuOH. Narrowly-dispersed nanoparticles with high ruthenium loadings (up to 53%) and an intensity-average diameter < 300 nm were obtained by nanoprecipitation, as characterized by dynamic light scattering (DLS). Their phototoxicity effect was evaluated on four bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) and compared to the parent compound RuOH. RuOH and the nanoparticles were found to be non-active towards Gram-negative bacterial strains. However, depending on the tacticity and molecular weight of the RuPLA nanoconjugates, differences in photobactericidal activity on Gram-positive bacterial strains have been evidenced whereas RuOH remained non active.

15.
Chem Sci ; 11(10): 2657-2663, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34084324

RESUMEN

Ruthenium complexes have attracted a lot of attention as potential photosensitizers (PSs) for photodynamic therapy (PDT). However, some of these PSs are unsuitable for PDT applications due to their low cellular uptake, which is possibly the consequence of their relatively low degree of lipophilicity, which prevents them from penetrating into tumor cells. Here, we report the simple one-pot synthesis of ruthenium-containing nanoconjugates from a non-cell-penetrating, non-phototoxic ruthenium(ii) polypyridyl complex (RuOH), by a drug-initiated ring-opening polymerization of lactide through the formation of a zinc initiator. These conjugates were then formulated into nanoparticles by nanoprecipitation and characterized by means of nuclear magnetic resonance spectroscopy (NMR), matrix-assisted laser desorption/ionization - time of flight mass spectrometry (MALDI-TOF MS) and dynamic light scattering (DLS). Finally, their photo-therapeutic activity (λ exc = 480 nm, 3.21 J cm-2) in cancerous human cervical carcinoma (HeLa) and non-cancerous retinal pigment epithelium (RPE-1) cells was tested alongside that of RuOH and their cellular uptake in HeLa cells was assessed by confocal microscopy and inductively coupled plasma - mass spectrometry (ICP-MS). All nanoparticles showed improved photophysical properties including luminescence and singlet oxygen generation, enhanced cellular uptake and, capitalizing on this, an improved photo-toxicity. Overall, this study demonstrates how it is possible to transform a non-phototoxic PDT PS into an active PS using an easy, versatile polymerization technique.

16.
Front Chem ; 7: 301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192185

RESUMEN

An effective route for ring-opening copolymerization of ß-butyrolactone (BBL) with ε-decalactone (ε-DL) is reported. Microstructures of the block copolymers characterized by 13C NMR spectroscopy revealed syndiotactic-enriched poly(3-hydroxybutyrate) (PHB) blocks. Several di- and triblock copolymers (PDL-b-PHB and PDL-b-PHB-b-PDL, respectively) were successfully synthesized by sequential addition of the monomers using (salan)Y(III) complexes as catalysts. The results from MALDI-ToF mass spectrometry confirmed the presence of the copolymers. Moreover, thermal properties of the block copolymers were also investigated and showed that the microphase separation of PDL-b-PHB copolymers into PHB- and PDL-rich domains has an impact on the glass transition temperatures of both blocks.

17.
Angew Chem Int Ed Engl ; 58(36): 12585-12589, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-30908800

RESUMEN

Enantiopure poly(lactic acid) (PLA) can form stereocomplexes when enantiomeric PLA chains are mixed in equivalent amounts. Such materials provide interesting features that might be suitable for numerous applications. Despite several advantages, the main drawback of PLA is its narrow window of processing, thus limiting its use for industrial applications. Reported herein are achiral iron complexes, that are highly active, productive, and stereoselective under mild reaction conditions for the ring-opening polymerization of lactide. The corresponding catalytic systems enable the production of stereoblock polymers with high molecular weights, allowing the formation of thermally stable and industrially relevant stereocomplexes.

18.
Angew Chem Int Ed Engl ; 56(45): 14016-14019, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28902440

RESUMEN

The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non-covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene-1,3,5-tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine-free BTA co-monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.

19.
J Am Chem Soc ; 139(17): 6217-6225, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28398052

RESUMEN

We report here a unique example of an in situ generated aluminum initiator stabilized by a C2-symmetric salen ligand which shows a hitherto unknown high activity for the ROP of rac-lactide at room temperature. Using a simple and robust catalyst system, which is prepared from a salen complex and an onium salt, this convenient route employs readily available reagents that afford polylactide in good yields with narrow polydispersity indices, without the need for time-consuming and expensive processes that are typically required for catalyst preparation and purification. In line with the experimental evidence, DFT studies reveal that initiation and propagation proceed via an external alkoxide attack on the coordinated monomer.

20.
Chem Commun (Camb) ; 50(89): 13773-6, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25251079

RESUMEN

A new tandem catalytic system mediates very efficiently and selectively at room temperature two sequential reactions to produce relevant derivatives in one pot. Remarkably, this new concept of catalysis allows the facile synthesis of polypeptides and provides direct access to cyclic carbonates in high yields, through the incorporation of the carbon dioxide released from the initial step, thus achieving full-atom economy.


Asunto(s)
Carbonatos/química , Péptidos/química , Aluminio/química , Anhídridos/química , Dióxido de Carbono/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...