Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38245513

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Adenoma , Colorectal Neoplasms , Animals , Humans , Mice , Adenoma/diagnosis , Adenoma/therapy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Escherichia coli/genetics , Prospective Studies , Salicylates , Double-Blind Method
2.
Science ; 381(6658): 682-686, 2023 08 11.
Article En | MEDLINE | ID: mdl-37561843

Synthetic biology has developed sophisticated cellular biosensors to detect and respond to human disease. However, biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi to detect donor DNA from the genomes of colorectal cancer (CRC) cells, organoids, and tumors. We characterized the functionality of the biosensors in vitro with coculture assays and then validated them in vivo with sensor bacteria delivered to mice harboring colorectal tumors. We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of CRC. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA.


Acinetobacter , Biosensing Techniques , Cell-Free Nucleic Acids , Colorectal Neoplasms , DNA, Neoplasm , Animals , Humans , Mice , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA, Neoplasm/analysis , Mutation , Acinetobacter/genetics , Cell-Free Nucleic Acids/analysis , Bioengineering
3.
Br J Cancer ; 129(9): 1442-1450, 2023 10.
Article En | MEDLINE | ID: mdl-37563222

Colorectal cancer (CRC) is a common and deadly disease. Unfortunately, immune checkpoint inhibitors (ICIs) fail to elicit effective anti-tumour responses in the vast majority of CRC patients. Patients that are most likely to respond are those with DNA mismatch repair deficient (dMMR) and microsatellite instability (MSI) disease. However, reliable predictors of ICI response are lacking, even within the dMMR/MSI subtype. This, together with identification of novel mechanisms to increase response rates and prevent resistance, are ongoing and vitally important unmet needs. To address the current challenges with translation of early research findings into effective therapeutic strategies, this review summarises the present state of preclinical testing used to inform the development of immuno-regulatory treatment strategies for CRC. The shortfalls and advantages of commonly utilised mouse models of CRC, including chemically induced, transplant and transgenic approaches are highlighted. Appropriate use of existing models, incorporation of patient-derived data and development of cutting-edge models that recapitulate important features of human disease will be key to accelerating clinically relevant research in this area.


Brain Neoplasms , Colorectal Neoplasms , Animals , Mice , Humans , Translational Research, Biomedical , Medical Oncology , Microsatellite Instability , DNA Mismatch Repair
4.
Gastroenterology ; 162(3): 890-906, 2022 03.
Article En | MEDLINE | ID: mdl-34883119

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/physiology , Carcinogenesis/pathology , Cell Lineage , Colorectal Neoplasms/pathology , Mesenchymal Stem Cells/physiology , Actins/genetics , Actins/metabolism , Adult , Aged , Aged, 80 and over , Animals , CD146 Antigen/genetics , CD146 Antigen/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Humans , Intestinal Mucosa/pathology , Ki-67 Antigen/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Organoids/pathology , Organoids/physiology , Prognosis , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sequence Analysis, RNA , Survival Rate , Tumor Microenvironment
5.
J Vis Exp ; (175)2021 09 03.
Article En | MEDLINE | ID: mdl-34542536

Hepatic metastasis of colorectal cancer (CRC) is a leading cause of cancer-related death. Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play a crucial role in metastatic CRC progression and predict poor patient prognosis. However, there is a lack of satisfactory mouse models to study the crosstalk between metastatic cancer cells and CAFs. Here, we present a method to investigate how liver metastasis progression is regulated by the metastatic niche and possibly could be restrained by stroma-directed therapy. Portal vein injection of CRC organoids generated a desmoplastic reaction, which faithfully recapitulated the fibroblast-rich histology of human CRC liver metastases. This model was tissue-specific with a higher tumor burden in the liver when compared to an intra-splenic injection model, simplifying mouse survival analyses. By injecting luciferase-expressing tumor organoids, tumor growth kinetics could be monitored by in vivo imaging. Moreover, this preclinical model provides a useful platform to assess the efficacy of therapeutics targeting the tumor mesenchyme. We describe methods to examine whether adeno-associated virus-mediated delivery of a tumor-inhibiting stromal gene to hepatocytes could remodel the tumor microenvironment and improve mouse survival. This approach enables the development and assessment of novel therapeutic strategies to inhibit hepatic metastasis of CRC.


Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , Organoids , Portal Vein , Tumor Microenvironment
...