Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180202, 2019 04 01.
Article En | MEDLINE | ID: mdl-30967080

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Ants/parasitology , Biological Coevolution , Butterflies/physiology , Host-Parasite Interactions , Nesting Behavior , Symbiosis , Animals , Europe , Species Specificity
3.
Glob Chang Biol ; 21(9): 3313-22, 2015 Sep.
Article En | MEDLINE | ID: mdl-26390228

Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.


Butterflies/physiology , Climate Change , Climate , Adaptation, Biological , Animals , Phylogeny , Population Dynamics , Seasons , Temperature , United Kingdom
4.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Article En | MEDLINE | ID: mdl-26156773

Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.


Ants/physiology , Ants/parasitology , Butterflies/physiology , Gene Expression Regulation , Monoterpenes/metabolism , Origanum/genetics , Animals , Ants/genetics , Butterflies/growth & development , Cues , Cymenes , Feeding Behavior , Flowers/metabolism , Gene Expression Regulation, Plant , Host-Parasite Interactions , Italy , Larva/growth & development , Larva/physiology , Origanum/metabolism
5.
Ecol Appl ; 24(1): 108-20, 2014 Jan.
Article En | MEDLINE | ID: mdl-24640538

Conservation of endangered species necessitates a full appreciation of the ecological processes affecting the regulation, limitation, and persistence of populations. These processes are influenced by birth, death, and dispersal events, and characterizing them requires careful accounting of both the deterministic and stochastic processes operating at both local and regional population levels. We combined ecological theory and observations on Allee effects by linking mathematical analysis and the spatial and temporal population dynamics patterns of a highly endangered butterfly, the high brown fritillary, Argynnis adippe. Our theoretical analysis showed that the role of density-dependent feedbacks in the presence of local immigration can influence the strength of Allee effects. Linking this theory to the analysis of the population data revealed strong evidence for both negative density dependence and Allee effects at the landscape or regional scale. These regional dynamics are predicted to be highly influenced by immigration. Using a Bayesian state-space approach, we characterized the local-scale births, deaths, and dispersal effects together with measurement and process uncertainty in the metapopulation. Some form of an Allee effect influenced almost three-quarters of these local populations. Our joint analysis of the deterministic and stochastic dynamics suggests that a conservation priority for this species would be to increase resource availability in currently occupied and, more importantly, in unoccupied sites.


Butterflies/physiology , Endangered Species , Animals , Bayes Theorem , Conservation of Natural Resources , Demography , Models, Biological , United Kingdom
6.
Oecologia ; 174(4): 1463-72, 2014 Apr.
Article En | MEDLINE | ID: mdl-24414235

The dramatic recovery of three species of grassland specialist butterfly threatened with extinction at their high latitude range limits in the 1980s has been attributed to two factors: increased grazing on calcareous grassland sites and warmer air temperatures. Both result in the warming of soil surface temperatures, favourable to the larvae of these species. We address the influence of both of these factors on the habitat usage of the butterfly Polyommatus bellargus, undergoing recovery at its northern range edge. We test the hypothesis that the larval niche of P. bellargus has become less constrained in the past three decades, whilst controlling for changes in habitat structure. Once habitat change has been accounted for we find no evidence for a broadening of the larval niche of P. bellargus. Further, we show that coincident with the recovery of P. bellargus there have been drastic reductions in average turf height across UK chalk grasslands, but changes in air temperature have been highly variable. We conclude that changes to soil surface temperatures caused by reducing turf heights will have been a more consistent influence than air temperature increases, and so habitat improvements through increased grazing will have been the major driver of recovery in P. bellargus. We consider the need to account for changes in habitat when exploring the impacts of recent climate change on local habitats in thermophilous species, and emphasise the continued importance of habitat management to support such species under variable local climates.


Butterflies , Climate , Ecosystem , Animals , Endangered Species , Female , Larva , Models, Biological , Oviposition , Soil , Temperature , United Kingdom
8.
Curr Biol ; 23(4): 323-7, 2013 Feb 18.
Article En | MEDLINE | ID: mdl-23394832

The possession of an efficient communication system and an ability to distinguish between young stages are essential attributes that enable eusocial insects to live in complex integrated societies. Although ants communicate primarily via chemicals, it is increasingly clear that acoustical signals also convey important information, including status, between adults in many species. However, all immature stages were believed to be mute. We confirm that larvae and recently formed pupae of Myrmica ants are mute, yet once they are sclerotized, the pupae possess a fully functioning stridulatory organ. The sounds generated by worker pupae were similar to those of workers but were emitted as single pulses rather than in the long sequences characteristic of adults; both induced the same range and intensity of benevolent behaviors when played back to unstressed workers. Both white and sclerotized pupae have a higher social status than larvae within Myrmica colonies, but the latter's status fell significantly after they were made mute. Our results suggest that acoustical signals supplant semiochemicals as a means of identification in sclerotized pupae, perhaps because their hardened integuments block the secretion of brood pheromones or because their developing adult secretions initially differ from overall colony odors.


Animal Communication , Ants/physiology , Pupa/physiology , Sound , Animals , Ants/growth & development , Larva/physiology , Pheromones/physiology , Social Behavior
9.
Proc Biol Sci ; 280(1751): 20122336, 2013 Jan 22.
Article En | MEDLINE | ID: mdl-23193127

An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed.


Adaptation, Biological/physiology , Ants/parasitology , Butterflies/physiology , Conservation of Natural Resources/methods , Endangered Species , Host Specificity/physiology , Social Behavior , Animals , DNA, Mitochondrial/genetics , Host-Parasite Interactions , Hydrocarbons/metabolism , Larva/metabolism , Microsatellite Repeats/genetics , Poland , Spain , Species Specificity , Survival Analysis
10.
Proc Natl Acad Sci U S A ; 109(37): 14924-9, 2012 Sep 11.
Article En | MEDLINE | ID: mdl-22927392

Little is known of the population dynamics of long-range insect migrants, and it has been suggested that the annual journeys of billions of nonhardy insects to exploit temperate zones during summer represent a sink from which future generations seldom return (the "Pied Piper" effect). We combine data from entomological radars and ground-based light traps to show that annual migrations are highly adaptive in the noctuid moth Autographa gamma (silver Y), a major agricultural pest. We estimate that 10-240 million immigrants reach the United Kingdom each spring, but that summer breeding results in a fourfold increase in the abundance of the subsequent generation of adults, all of which emigrate southward in the fall. Trajectory simulations show that 80% of emigrants will reach regions suitable for winter breeding in the Mediterranean Basin, for which our population dynamics model predicts a winter carrying capacity only 20% of that of northern Europe during the summer. We conclude not only that poleward insect migrations in spring result in major population increases, but also that the persistence of such species is dependent on summer breeding in high-latitude regions, which requires a fundamental change in our understanding of insect migration.


Animal Migration/physiology , Models, Theoretical , Moths/physiology , Seasons , Animals , Geography , Linear Models , Population Dynamics , Radar , Reproduction/physiology , United Kingdom
11.
Proc Natl Acad Sci U S A ; 109(35): 14063-8, 2012 Aug 28.
Article En | MEDLINE | ID: mdl-22893689

The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for colonization during recent range expansions. Records from intensive surveys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species.


Biodiversity , Birds/growth & development , Butterflies/growth & development , Conservation of Natural Resources , Ecosystem , Animal Migration , Animals , Birds/classification , Butterflies/classification , Climate Change , Coleoptera/classification , Coleoptera/growth & development , Data Collection , Spiders/classification , Spiders/growth & development , United Kingdom
12.
Am Nat ; 179(1): 110-23, 2012 Jan.
Article En | MEDLINE | ID: mdl-22173464

Numerous invertebrates inhabit social insect colonies, including the hoverfly genus Microdon, whose larvae typically live as brood predators. Formica lemani ant colonies apparently endure Microdon mutabilis infections over several years, despite losing a considerable fraction of young, and may even produce more gynes. We present a model for resource allocation within polygynous ant colonies, which assumes that whether an ant larva switches development into a worker or a gyne depends on the quantity of food received randomly from workers. Accordingly, Microdon predation promotes gyne development by increasing resource availability for surviving broods. Several model predictions are supported by empirical data. (i) Uninfected colonies seldom produce gynes. (ii) Infected colonies experience a short-lived peak in gyne production leading to a bimodal distribution in gyne production. (iii) Low brood : worker ratio is the critical mechanism controlling gyne production. (iv) Brood : worker ratio reduction must be substantial for increased gyne production to become noticeable.


Ants/parasitology , Diptera/physiology , Food Chain , Animals , Larva/physiology , Models, Biological , Population Density , Population Dynamics , Predatory Behavior , Reproduction , Time Factors
13.
J Exp Biol ; 214(Pt 9): 1407-10, 2011 May 01.
Article En | MEDLINE | ID: mdl-21490248

Chemical communication plays a major role in the organisation of ant societies, and is mimicked to near perfection by certain large blue (Maculinea) butterflies that parasitise Myrmica ant colonies. The recent discovery of differentiated acoustical communication between different castes of ants, and the fact that this too is mimicked by the butterflies, adds a new component of coevolutionary complexity to a fascinating multitrophic system of endangered species, and it could inspire new ways to engage the public in their conservation.


Animal Communication , Butterflies/physiology , Conservation of Natural Resources , Acoustics , Animals , Ants/parasitology , Biological Evolution , Public Opinion
14.
Commun Integr Biol ; 3(2): 169-71, 2010 Mar.
Article En | MEDLINE | ID: mdl-20585513

Recent recordings of the stridulations of Myrmica ants revealed that their queens made distinctive sounds from their workers, although the acoustics of queens and workers, respectively, were the same in different species of Myrmica. Queen recordings induced enhanced protective behavior when played to workers in the one species tested. Larvae and pupae of the butterfly genus Maculinea inhabit Myrmica colonies as social parasites, and both stages generate sounds that mimic those of a Myrmica queen, inducing similar superior treatments from workers as their model. We discuss how initial penetration and acceptance as a colony member is achieved by Maculinea through mimicking the species-specific semio-chemicals of their hosts, and how acoustical mimicry is then employed to elevate the parasite's membership of that society towards the highest attainable level in their host's hierarchy. We postulate that, if acoustics is as well developed a means of communication in certain ants as these studies suggest, then others among an estimated 10,000 species of ant social parasite may supplement their well-known use of chemical and tactile mimicry to trick host ants with mimicry of host acoustical systems.

15.
Science ; 323(5915): 782-5, 2009 Feb 06.
Article En | MEDLINE | ID: mdl-19197065

Ants dominate terrestrial ecosystems through living in complex societies whose organization is maintained via sophisticated communication systems. The role of acoustics in information exchange may be underestimated. We show that Myrmica schencki queens generate distinctive sounds that elicit increased benevolent responses from workers, reinforcing their supreme social status. Although fiercely defended by workers, ant societies are infiltrated by specialist insects that exploit their resources. Sounds produced by pupae and larvae of the parasitic butterfly Maculinea rebeli mimic those of queen ants more closely than those of workers, enabling them to achieve high status within ant societies. We conclude that acoustical mimicry provides another route for infiltration for approximately 10,000 species of social parasites that cheat ant societies.


Animal Communication , Ants/physiology , Butterflies/physiology , Imitative Behavior , Animals , Behavior, Animal , Female , Larva/physiology , Pupa/physiology , Social Behavior , Sound
16.
J Chem Ecol ; 34(2): 168-78, 2008 Feb.
Article En | MEDLINE | ID: mdl-18185959

The larva of the hoverfly Microdon mutabilis is a specialist social parasite of the ant Formica lemani that is adapted to local groups of F. lemani colonies but mal-adapted to colonies of the same species situated only a few hundred meters away. At a study site in Ireland, F. lemani shares its habitat with four other ant species. All nest under stones, making the oviposition choice by M. mutabilis females crucial to offspring survival. In this study, we tested the hypothesis that, as an extreme specialist, M. mutabilis should respond to cues derived from its host rather than from its microenvironment, a phenomenon that has hitherto only been addressed in the context of herbivorous insects and their parasitoids. In behavioral assays, M. mutabilis females reacted to volatiles from F. lemani colonies by extending their ovipositors, presumably probing for an oviposition substrate. This behavior was not observed toward negative controls or volatiles from colonies of Myrmica scabrinodis, the host ant of the closely related Microdon myrmicae. Coupled gas chromatography-electroantennography (GC-EAG) that used antennal preparations of M. mutabilis located a single physiologically active compound within an extract of heads of F. lemani workers. Coupled GC-mass spectrometry (GC-MS) tentatively identified the compound as a methylated methylsalicylate. GC co-injection of the extract with authentic samples showed that of the four possible isomers (methyl 3-, 4-, 5-, and 6-methylsalicylate), only methyl 6-methylsalicylate co-eluted with the EAG-active peak. Furthermore, the response to methyl 6-methylsalicylate was four times higher than to those of the other isomers. Coupled GC-EAG and GC-MS also revealed physiological responses to two constituents, 3-octanone and 3-octanol, of the M. scabrinodis alarm pheromone. However, the behavioral trials did not reveal any behavior that could be attributed to these compounds. Results are discussed in the context of four phases of host location behavior, and of the characteristics, which volatile cues should provide to be useful for an extreme specialist such as M. mutabilis.


Ants/parasitology , Diptera/physiology , Host-Parasite Interactions , Animals , Ants/physiology , Electrophysiology , Female , Odorants , Oviposition , Pheromones/physiology , Sense Organs/physiology
17.
Am Nat ; 169(4): 466-80, 2007 Apr.
Article En | MEDLINE | ID: mdl-17269113

Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for pESS < 0.5. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups.


Adaptation, Biological , Biological Evolution , Butterflies/growth & development , Models, Biological , Symbiosis , Animals , Ants/physiology , Computer Simulation , France , Larva/growth & development , Selection, Genetic , Time Factors
18.
Proc Biol Sci ; 273(1596): 1935-41, 2006 Aug 07.
Article En | MEDLINE | ID: mdl-16822755

The insects are probably the most hyperdiverse and economically important metazoans on the planet, but there is no consensus on the best way to model the dimensions of their diversity at multiple spatial scales, and the huge amount of information involved hinders data synthesis and the revelation of 'patterns of nature'. Using a sample of more than 600k insect species in the size range 1-100mm, we analysed insect body sizes and revealed self-similar patterns persisting across spatial scales from several hectares to the World. The same patterns were found in both Northern and Southern Hemispheres. The patterns include: parallel rank-abundance distributions; flatter species-area curves in smaller insects-indicating their wider geographical distribution; the recurrence of the same species-rich family in the same body-size class at all spatial scales-which generates self-similar size-frequency distributions (SFDs)-and the discovery that with decreasing mean body size, local species richness represents an increasing fraction of global species richness. We describe how these 'rationalizing' patterns can be translated into methods for monitoring and predicting species diversity and community structure at all spatial scales.


Biodiversity , Insecta/classification , Animals , Body Size , Entomology/methods , Geography , Insecta/anatomy & histology , North America , United Kingdom
...