Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231208271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021452

RESUMEN

Background: Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective: To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods: In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results: This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract (d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [rsp] = -0.56, p < 0.001), and forceps minor of corpus callosum (rsp = -0.45, p < 0.01). Conclusion: MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.

2.
J Biomed Mater Res B Appl Biomater ; 102(1): 73-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23852924

RESUMEN

From the results of laboratory investigations reported in the literature, it has been suggested that stress corrosion cracking (SCC) mechanisms may contribute to early failures in titanium alloys that have elevated oxygen concentrations. However, the susceptibility of titanium alloys to SCC in physiological environments remains unclear. In this study, a fracture mechanics approach was used to examine the SCC susceptibility of CP titanium grade 4 in Ringer's solution and distilled de-ionized (DI) water, at 37°C. The study duration was 26 weeks, simulating the non-union declaration of a plated fracture. Four wedge loads were used corresponding to 86-95% of the alloy's ligament yield load. The longest cracks were measured to be 0.18 mm and 0.10 mm in Ringer's solution and DI water, respectively. SEM analysis revealed no evidence of extensive fluting and quasi-cleavage fracture features which, in literature reports, were attributed to SCC. We thus postulate that the Ringer's solution accelerated the wedge-loaded crack growth without producing the critical stresses needed to change the fracture mechanism. Regression analysis of the crack length results led to a significant best-fit relationship between crack growth velocity (independent variable) and test electrolyte, initial wedge load, and time of immersion of specimen in electrolyte (dependent variables).


Asunto(s)
Prótesis e Implantes , Titanio , Aleaciones/química , Corrosión , Análisis de Falla de Equipo , Humanos , Soluciones Isotónicas/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Prótesis e Implantes/efectos adversos , Solución de Ringer , Estrés Mecánico , Propiedades de Superficie , Titanio/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA