Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Physiol Int ; 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35238800

Cognitive impairment and dementia are significant health burdens worldwide. Aging, hypertension, and diabetes are the primary risk factors for Alzheimer's disease and Alzheimer's disease and related dementias (AD/ADRD). There are no effective treatments for AD/ADRD to date. An emerging body of evidence indicates that cerebral vascular dysfunction and hypoperfusion precedes the development of other AD pathological phenotypes and cognitive impairment. However, vascular contribution to dementia is not currently well understood. This commentary highlights the emerging concepts and mechanisms underlying the microvascular contribution to AD/ADRD, including hypotheses targeting the anterograde and retrograde cerebral vascular pathways, as well as the cerebral capillaries and the venous system. We also briefly discuss vascular endothelial dysfunction, oxidative stress, inflammation, and cellular senescence that may contribute to impaired cerebral blood flow autoregulation, neurovascular uncoupling, and dysfunction of cerebral capillaries and the venous system.

2.
Physiol Genomics ; 54(2): 58-70, 2022 02 01.
Article En | MEDLINE | ID: mdl-34859687

Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.


Calmodulin-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Hypertension, Renal/genetics , Hypertension/genetics , Nephritis/genetics , Precision Medicine/methods , Animals , Blood Pressure/genetics , Cognitive Dysfunction/genetics , Disease Models, Animal , Homeostasis/genetics , Humans , Mutation , Precision Medicine/trends , Rats , Renal Circulation/genetics
3.
Am J Physiol Heart Circ Physiol ; 322(2): H246-H259, 2022 02 01.
Article En | MEDLINE | ID: mdl-34951541

Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.


Dementia, Vascular/drug therapy , Diabetic Angiopathies/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sorbitol/analogs & derivatives , Animals , Arterioles/drug effects , Arterioles/physiopathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiopathology , Cells, Cultured , Cerebrovascular Circulation , Cognition , Male , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/physiopathology , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sorbitol/pharmacology , Sorbitol/therapeutic use
...