Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892368

RESUMEN

Intestinal epithelium renewal strictly depends on fine regulation between cell proliferation, differentiation, and apoptosis. While murine intestinal microbiota has been shown to modify some epithelial cell kinetics parameters, less is known about the role of the human intestinal microbiota. Here, we investigated the rate of intestinal cell proliferation in C3H/HeN germ-free mice associated with human flora (HFA, n = 8), and in germ-free (n = 15) and holoxenic mice (n = 16). One hour before sacrifice, all mice were intraperitoneally inoculated with 5-bromodeoxyuridine (BrdU), and the number of BrdU-positive cells/total cells (labelling index, LI), both in the jejunum and the colon, was evaluated by immunohistochemistry. Samples were also observed by scanning electron microscopy (SEM). Moreover, the microbiota composition in the large bowel of the HFA mice was compared to that of of human donor's fecal sample. No differences in LI were found in the small bowels of the HFA, holoxenic, and germ-free mice. Conversely, the LI in the large bowel of the HFA mice was significantly higher than that in the germ-free and holoxenic counterparts (p = 0.017 and p = 0.048, respectively). In the holoxenic and HFA mice, the SEM analysis disclosed different types of bacteria in close contact with the intestinal epithelium. Finally, the colonic microbiota composition of the HFA mice widely overlapped with that of the human donor in terms of dominant populations, although Bifidobacteria and Lactobacilli disappeared. Despite the small sample size analyzed in this study, these preliminary findings suggest that human intestinal microbiota may promote a high proliferation rate of colonic mucosa. In light of the well-known role of uncontrolled proliferation in colorectal carcinogenesis, these results may deserve further investigation in a larger population study.


Asunto(s)
Proliferación Celular , Colon , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Ratones , Colon/microbiología , Colon/metabolismo , Masculino , Vida Libre de Gérmenes , Femenino , Ratones Endogámicos C3H , Heces/microbiología
2.
Gut Microbes ; 16(1): 2361660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935764

RESUMEN

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Asunto(s)
Proteínas de Transporte de Catión , Duodeno , Microbioma Gastrointestinal , Hepcidinas , Hierro de la Dieta , Hígado , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Hierro de la Dieta/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hígado/metabolismo , Hígado/microbiología , Duodeno/metabolismo , Duodeno/microbiología , Hepcidinas/metabolismo , Ferritinas/metabolismo , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Pulmón/microbiología , Pulmón/metabolismo , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Hemoglobinas/metabolismo , Masculino
3.
Appl Environ Microbiol ; 90(5): e0001624, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38651930

RESUMEN

Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Animales , Ratones , Infecciones por Clostridium/terapia , Infecciones por Clostridium/microbiología , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Humanos , Ratones Endogámicos C57BL , Femenino
4.
Horm Res Paediatr ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432193

RESUMEN

Introduction A variable near adult height (NAH) outcome after growth hormone (GH) therapy in Noonan syndrome (NS) patients with short stature has been reported. The main objective of this study was to evaluate NAH and body mass index (BMI) evolution in a large Belgian cohort of NS patients treated for short stature. The secondary objectives were to investigate whether sex, genotype, the presence of a thoracic deformity and/or a heart anomaly might affect NAH and to validate the recently developed NAH prediction model by Ranke et al. Methods Clinical and auxological data of GH treated short NS patients born before 2001 were extracted from the national Belgrow registry. NAH was available in 54 (35 male) genotyped NS using a gene panel of 9 genes, showing pathogenic variants in PTPN11 in 32 and in SOS1 in 5 patients, while in 17 patients gene panel analysis was inconclusive (no mutation group). Results After a median (P10; P90) duration of 5.4 (2.2-10.3) years of GH therapy with a median dose of 0.05 mg/kg/day NS patients reached a median NAH of -1.7 (-3.4; -0.8) SDS. Median total height gain was 1.1 (0.1; 2.3) SDS. Sex, genotype and the presence of a thoracic or cardiac malformation did not correlate with NAH or total height gain. Linear regression modelling revealed that height SDS at start (beta=0.90, p<0.001), mid-parental height SDS (beta =0.27; p=0.005), birth weight SDS (beta=0.15; p=0.051), age at start (beta=0.07; p=0032) were independently associated with NAH SDS. Median BMI SDS increased significantly (p<0.001) from -1.0 (-2.5; 0.0) at start to -0.2 (-1.5; 0.9) at NAH. The observed NAH in a subgroup of 44 patients with more than 3 years of GH treatment was not statistically different from the predicted NAH by the Noonan NAH prediction model of Ranke. Conclusion Long-term GH therapy at a dose of 0.05 mg/kg/day in short NS patients is effective in improving adult height and BMI, irrespective of the genotype and presence or absence of cardiac and or thoracic anomalies.

5.
Sci Rep ; 14(1): 987, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200051

RESUMEN

The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.


Asunto(s)
Adipogénesis , Sobrecarga de Hierro , Humanos , Acetatos , Faecalibacterium prausnitzii , Hierro , Butiratos
6.
Microorganisms ; 11(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38004765

RESUMEN

Treatment options for multidrug-resistant bacterial infections are limited and often ineffective. Fecal microbiota transplantation (FMT) has emerged as a promising therapy for intestinal multidrug-resistant bacterial decolonization. However, clinical results are discrepant. The aim of our pilot study was to evaluate the screening performance of a simple diagnostic tool to select fecal samples that will be effective in decolonizing the intestine. Fecal samples from 10 healthy subjects were selected. We developed an agar spot test to evaluate their antagonistic activity toward the growth of VanA Enterococcus faecium and OXA-48-producing Klebsiella pneumoniae, two of the most serious and urgent threats of antibiotic resistance. Most fecal samples were able to limit the growth of both bacteria in vitro but with large inter-individual variation. The samples with the highest and lowest antagonistic activity were used for FMT in a mouse model of intestinal colonization. FMT was not successful in reducing intestinal colonization with VanA Enterococcus faecium, whereas FMT performed with the fecal sample showing the highest activity on the agar spot test was able to significantly reduce the intestinal colonization of mice with Klebsiella pneumoniae OXA-48. The agar spot test could thus serve as a reliable screening tool to select stool samples with the best potential to eradicate/reduce multidrug-resistant bacteria carriage after FMT.

7.
Front Endocrinol (Lausanne) ; 14: 1112938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334282

RESUMEN

Introduction: A substantial proportion of SGA patients present with a syndrome underlying their growth restriction. Most SGA cohorts comprise both syndromic and non-syndromic patients impeding delineation of the recombinant human growth hormone (rhGH) response. We present a detailed characterization of a SGA cohort and analyze rhGH response based on adult height (AH). Methods: Clinical and auxological data of SGA patients treated with rhGH, who had reached AH, were retrieved from BELGROW, a national database of all rhGH treated patients held by BESPEED (BElgian Society for PEdiatric Endocrinology and Diabetology). SGA patients were categorized in syndromic or non-syndromic patients. Results: 272 patients were included, 42 classified as syndromic (most frequent diagnosis (n=6): fetal alcohol syndrome and Silver-Russell syndrome). Compared with non-syndromic patients, syndromic were younger [years (median (P10/P90)] 7.43 (4.3/12.37) vs 10.21 (5.43/14.03), p=0.0005), shorter (height SDS -3.39 (-5.6/-2.62) vs -3.07 (-3.74/-2.62), p=0.0253) and thinner (BMI -1.70 (-3.67/0.04) vs -1.14 (-2.47/0.27) SDS, p=0.0054) at start of rhGH treatment. First year rhGH response was comparable (delta height SDS +0.54 (0.24/0.94) vs +0.56 (0.26/0.92), p=0.94). Growth pattern differed with syndromic patients having a higher prepubertal (SDS +1.26 vs +0.83, p=0.0048), but a lower pubertal height gain compared to the non-syndromic group (SDS -0.28 vs 0.44, p=0.0001). Mean rhGH dose was higher in syndromic SGA patients (mg/kg body weight/day 0.047 (0.039/0.064) vs 0.043 (0.035/0.056), p=0.0042). AH SDS was lower in syndromic SGA patients (-2.59 (-4.99/-1.57) vs -2.32 (-3.3/-1.2), p=0.0107). The majority in both groups remained short (<-2 SDS: syndromic 71%, non-syndromic 63%). Total height gain was comparable in both groups (delta height SDS +0.76 (-0.70/1.48) vs +0.86 (-0.12/1.86), p=0.41). Conclusions: Compared to non-syndromic SGA patients, syndromic SGA patients were shorter when starting rhGH therapy, started rhGH therapy earlier, and received a higher dose of rhGH. At AH, syndromic SGA patients were shorter than non-syndromic ones, but their height gain under rhGH therapy was comparable.


Asunto(s)
Hormona de Crecimiento Humana , Enfermedades del Recién Nacido , Recién Nacido , Femenino , Adulto , Humanos , Niño , Hormona del Crecimiento , Hormona de Crecimiento Humana/uso terapéutico , Bélgica/epidemiología , Edad Gestacional , Retardo del Crecimiento Fetal/tratamiento farmacológico , Proteínas Recombinantes , Enfermedades del Recién Nacido/tratamiento farmacológico
8.
Front Cell Infect Microbiol ; 13: 1023441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936775

RESUMEN

Extensive intestinal resection leads to Short Bowel Syndrome (SBS), the main cause of chronic intestinal failure. Colon preservation is crucial for spontaneous adaptation, to improve absorption and reduce parenteral nutrition dependence. Fecal microbiota transplantation (FMT), a promising approach in pathologies with dysbiosis as the one observed in SBS patients, was assessed in SBS rats with jejuno-colonic anastomosis. The evolution of weight and food intake, the lenght of intestinal villi and crypts and the composition of fecal microbiota of Sham and SBS rats, transplanted or not with high fat diet rat microbiota, were analyzed. All SBS rats lost weight, increased their food intake and exhibited jejunal and colonic hyperplasia. Microbiota composition of SBS rats, transplanted or not, was largely enriched with Lactobacillaceae, and α- and ß-diversity were significantly different from Sham. The FMT altered microbiota composition and α- and ß-diversity in Sham but not SBS rats. FMT from high fat diet rats was successfully engrafted in Sham, but failed to take hold in SBS rats, probably because of the specific luminal environment in colon of SBS subjects favoring aero-tolerant over anaerobic bacteria. Finally, the level of food intake in SBS rats was positively correlated with their Lactobacillaceae abundance. Microbiota transfer must be optimized and adapted to this specific SBS environment.


Asunto(s)
Síndrome del Intestino Corto , Ratas , Animales , Síndrome del Intestino Corto/terapia , Síndrome del Intestino Corto/microbiología , Síndrome del Intestino Corto/patología , Roedores , Trasplante de Microbiota Fecal , Mucosa Intestinal/patología , Yeyuno
9.
Nutrients ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904230

RESUMEN

The first objective of infant formulas is to ensure the healthy growth of neonates and infants, as the sole complete food source during the first months of life when a child cannot be breastfed. Beyond this nutritional aspect, infant nutrition companies also try to mimic breast milk in its unique immuno-modulating properties. Numerous studies have demonstrated that the intestinal microbiota under the influence of diet shapes the maturation of the immune system and influences the risk of atopic diseases in infants. A new challenge for dairy industries is, therefore, to develop infant formulas inducing the maturation of immunity and the microbiota that can be observed in breastfed delivered vaginally, representing reference infants. Streptococcus thermophilus, Lactobacillus reuteri DSM 17938, Bifidobacterium breve (BC50), Bifidobacterium lactis Bb12, Lactobacillus fermentum (CECT5716), and Lactobacillus rhamnosus GG (LGG) are some of the probiotics added to infant formula, according to a literature review of the past 10 years. The most frequently used prebiotics in published clinical trials are fructo-oligosaccharides (FOSs), galacto-oligosaccharides (GOSs), and human milk oligosaccharides (HMOs). This review sums up the expected benefits and effects for infants of pre-, pro-, syn-, and postbiotics added to infant formula regarding the microbiota, immunity, and allergies.


Asunto(s)
Fórmulas Infantiles , Probióticos , Recién Nacido , Femenino , Niño , Humanos , Lactante , Lactancia Materna , Leche Humana , Oligosacáridos/farmacología
10.
Nutrients ; 15(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678133

RESUMEN

Microbiota studies have dramatically increased over these last two decades, and the repertoire of microorganisms with potential health benefits has been considerably enlarged. The development of next generation probiotics from new bacterial candidates is a long-term strategy that may be more efficient and rapid with discriminative in vitro tests. Streptococcus strains have received attention regarding their antimicrobial potential against pathogens of the upper and, more recently, the lower respiratory tracts. Pathogenic bacterial strains, such as non-typable Haemophilus influenzae (NTHi), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), are commonly associated with acute and chronic respiratory diseases, and it could be interesting to fight against pathogens with probiotics. In this study, we show that a Streptococcus mitis (S. mitis) EM-371 strain, isolated from the buccal cavity of a human newborn and previously selected for promising anti-inflammatory effects, displayed in vitro antimicrobial activity against NTHi, P. aeruginosa or S. aureus. However, the anti-pathogenic in vitro activity was not sufficient to predict an efficient protective effect in a preclinical model. Two weeks of treatment with S. mitis EM-371 did not protect against, and even exacerbated, NTHi lung infection.


Asunto(s)
Neumonía , Infecciones del Sistema Respiratorio , Infecciones Estafilocócicas , Recién Nacido , Humanos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Staphylococcus aureus , Streptococcus mitis , Bacterias , Haemophilus influenzae , Antibacterianos/farmacología , Pulmón
11.
Front Nutr ; 9: 928798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034910

RESUMEN

The aim of this study was to identify a probiotic-based strategy for maintaining muscle anabolism in the elderly. In previous research, we found that individuals experiencing short bowel syndrome (SBS) after an intestinal resection displayed beneficial metabolic adjustments that were mediated by their gut microbes. Thus, these bacteria could potentially be used to elicit similar positive effects in elderly people, who often have low food intake and thus develop sarcopenia. Gut bacterial strains from an SBS patient were evaluated for their ability to (1) maintain Caenorhabditis elegans survival and muscle structure and (2) promote protein anabolism in a model of frail rodents (18-month-old rats on a food-restricted diet: 75% of ad libitum consumption). We screened a first set of bacteria in C. elegans and selected two Lacticaseibacillus casei strains (62 and 63) for further testing in the rat model. We had four experimental groups: control rats on an ad libitum diet (AL); non-supplemented rats on the food-restricted diet (R); and two sets of food-restricted rats that received a daily supplement of one of the strains (∼109 CFU; R+62 and R+63). We measured lean mass, protein metabolism, insulin resistance, cecal short-chain fatty acids (SCFAs), and SCFA receptor expression in the gut. Food restriction led to decreased muscle mass [-10% vs. AL (p < 0.05)]. Supplementation with strain 63 tempered this effect [-2% vs. AL (p > 0.1)]. The mechanism appeared to be the stimulation of the insulin-sensitive p-S6/S6 and p-eIF2α/eIF2α ratios, which were similar in the R+63 and AL groups (p > 0.1) but lower in the R group (p < 0.05). We hypothesize that greater SCFA receptor sensitivity in the R+63 group promoted gut-muscle cross talk [GPR41: +40% and GPR43: +47% vs. R (p < 0.05)]. Hence, strain 63 could be used in association with other nutritional strategies and exercise regimes to limit sarcopenia in frail elderly people.

12.
Nutrients ; 14(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35406091

RESUMEN

The expanding knowledge on the systemic influence of the human microbiome suggests that fecal samples are underexploited sources of new beneficial strains for extra-intestinal health. We have recently shown that acetate, a main circulating microbiota-derived molecule, reduces the deleterious effects of pulmonary Streptococcus pneumoniae and enteric Salmonella enterica serovar Typhimurium bacterial post-influenza superinfections. Considering the beneficial and broad effects of acetate, we intended to isolate a commensal strain, producing acetate and potentially exploitable in the context of respiratory infections. We designed successive steps to select intestinal commensals that are extremely oxygen-sensitive, cultivable after a freezing process, without a proinflammatory effect on IL-8 induction, and producing acetate. We have identified the Blautia faecis DSM33383 strain, which decreased the TNFα-induced production of IL-8 by the intestinal epithelial cell line HT-29. The beneficial effect of this bacterial strain was further studied in two preclinical models of post-influenza Streptococcus pneumoniae (S.p) and Salmonella enterica serovar Typhimurium (S.t) superinfection. The intragastrical administration of Blautia faecis DSM33383 led to protection in influenza-infected mice suffering from an S.p. and, to a lesser extent, from an S.t secondary infection. Altogether, this study showed that Blautia faecis DSM33383 could be a promising candidate for preventive management of respiratory infectious diseases.


Asunto(s)
Clostridiales , Infecciones por Orthomyxoviridae , Infecciones Neumocócicas , Salmonelosis Animal , Animales , Clostridiales/clasificación , Clostridiales/aislamiento & purificación , Modelos Animales de Enfermedad , Humanos , Gripe Humana/complicaciones , Interleucina-8 , Ratones , Infecciones por Orthomyxoviridae/complicaciones , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Salmonella typhimurium , Streptococcus pneumoniae
13.
J Cachexia Sarcopenia Muscle ; 13(3): 1460-1476, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278043

RESUMEN

Evidence suggests that gut microbiota composition and diversity can be a determinant of skeletal muscle metabolism and functionality. This is true in catabolic (sarcopenia and cachexia) or anabolic (exercise or in athletes) situations. As gut microbiota is known to be causal in the development and worsening of metabolic dysregulation phenotypes such as obesity or insulin resistance, it can regulate, at least partially, skeletal muscle mass and function. Skeletal muscles are physiologically far from the gut. Signals generated by the gut due to its interaction with the gut microbiome (microbial metabolites, gut peptides, lipopolysaccharides, and interleukins) constitute links between gut microbiota activity and skeletal muscle and regulate muscle functionality via modulation of systemic/tissue inflammation as well as insulin sensitivity. The probiotics able to limit sarcopenia and cachexia or promote health performances in rodents are mainly lactic acid bacteria and bifidobacteria. In humans, the same bacteria have been tested, but the scarcity of the studies, the variability of the populations, and the difficulty to measure accurately and with high reproducibility muscle mass and function have not allowed to highlight specific strains able to optimize muscle mass and function. Further studies are required on more defined population, in order to design personalized nutrition. For elderly, testing the efficiency of probiotics according to the degree of frailty, nutritional state, or degree of sarcopenia before supplementation is essential. For exercise, selection of probiotics capable to be efficient in recreational and/or elite athletes, resistance, and/or endurance exercise would also require further attention. Ultimately, a combination of strategies capable to optimize muscle functionality, including bacteria (new microbes, bacterial ecosystems, or mix, more prone to colonize a specific gut ecosystem) associated with prebiotics and other 'traditional' supplements known to stimulate muscle anabolism (e.g. proteins), could be the best way to preserve muscle functionality in healthy individuals at all ages or patients.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Sarcopenia , Anciano , Caquexia , Ecosistema , Microbioma Gastrointestinal/fisiología , Promoción de la Salud , Humanos , Músculo Esquelético , Probióticos/uso terapéutico , Reproducibilidad de los Resultados , Sarcopenia/terapia
15.
J Immunol ; 207(7): 1857-1870, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479945

RESUMEN

The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis, the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus (Lagilactobacillus murinus) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis-infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans.


Asunto(s)
Lactobacillus/fisiología , Pulmón/inmunología , Mycobacterium tuberculosis/fisiología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Pulmón/microbiología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Neumonía
16.
mSphere ; 6(4): e0062421, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34378987

RESUMEN

The probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers.


Asunto(s)
Daño del ADN , Células Epiteliales/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Mutagénesis , Probióticos , Animales , Células CHO , Cricetulus , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Femenino , Islas Genómicas , Células HeLa , Humanos , Ratones , Mutación
17.
Infect Immun ; 89(9): e0073420, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33820816

RESUMEN

Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.


Asunto(s)
Infecciones por Enterobacteriaceae/etiología , Ácidos Grasos Volátiles/biosíntesis , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Gripe Humana/complicaciones , Gripe Humana/virología , Mucosa Intestinal/metabolismo , Interacciones Microbianas , Susceptibilidad a Enfermedades , Disbiosis , Infecciones por Enterobacteriaceae/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Gripe Humana/metabolismo , Mucosa Intestinal/inmunología
18.
FASEB J ; 35(4): e21348, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715218

RESUMEN

The gut microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the gut and/or lung microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota in general can modulate the reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific-pathogen-free (SPF) and germ-free (GF) mice. Thus, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice after intranasal instillation to lipopolysaccharide (LPS), a component of Gram-negative bacteria. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to the environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Lipopolisacáridos/toxicidad , Pulmón/inmunología , Pulmón/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratones , Organismos Libres de Patógenos Específicos , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 4/genética
19.
Ageing Res Rev ; 66: 101235, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33321253

RESUMEN

Older people are at an increased risk of developing respiratory diseases such as chronic obstructive pulmonary diseases, asthma, idiopathic pulmonary fibrosis or lung infections. Susceptibility to these diseases is partly due to the intrinsic ageing process, characterized by genomic, cellular and metabolic hallmarks and immunosenescence, and is associated with changes in the intestinal microbiota. Importantly, in the lungs, ageing is also associated with a dysbiosis and loss of resilience of the resident microbiota and alterations of the gut-lung axis. Notably, as malnutrition is often observed in the elderly, nutrition is one of the most accessible modifiable factors affecting both senescence and microbiota. This article reviews the changes affecting the lung and its resident microbiota during ageing, as well as the interconnections between malnutrition, senescence, microbiota, gut-lung axis and respiratory health. As the communication along the gut-lung axis becomes more permissive with ageing, this review also explores the evidence that the gut and lung microbiota are key players in the maintenance of healthy lungs, and as such, are potential targets for nutrition-based preventive strategies against lung disease in elderly populations.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Microbiota , Anciano , Anciano de 80 o más Años , Disbiosis , Humanos , Pulmón , Desnutrición/epidemiología
20.
Appl Microbiol Biotechnol ; 104(23): 10233-10247, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33085024

RESUMEN

In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.


Asunto(s)
Microbioma Gastrointestinal , Colon , Heces , Humanos , ARN Ribosómico 16S/genética , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...