Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 484, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627340

RESUMEN

Clinical myoelectric prostheses lack the sensory feedback and sufficient dexterity required to complete activities of daily living efficiently and accurately. Providing haptic feedback of relevant environmental cues to the user or imbuing the prosthesis with autonomous control authority have been separately shown to improve prosthesis utility. Few studies, however, have investigated the effect of combining these two approaches in a shared control paradigm, and none have evaluated such an approach from the perspective of neural efficiency (the relationship between task performance and mental effort measured directly from the brain). In this work, we analyzed the neural efficiency of 30 non-amputee participants in a grasp-and-lift task of a brittle object. Here, a myoelectric prosthesis featuring vibrotactile feedback of grip force and autonomous control of grasping was compared with a standard myoelectric prosthesis with and without vibrotactile feedback. As a measure of mental effort, we captured the prefrontal cortex activity changes using functional near infrared spectroscopy during the experiment. It was expected that the prosthesis with haptic shared control would improve both task performance and mental effort compared to the standard prosthesis. Results showed that only the haptic shared control system enabled users to achieve high neural efficiency, and that vibrotactile feedback was important for grasping with the appropriate grip force. These results indicate that the haptic shared control system synergistically combines the benefits of haptic feedback and autonomous controllers, and is well-poised to inform such hybrid advancements in myoelectric prosthesis technology.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Diseño de Prótesis , Actividades Cotidianas , Tecnología Háptica , Retroalimentación Sensorial , Fuerza de la Mano , Electromiografía/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36346869

RESUMEN

Individuals who use myoelectric upper-limb prostheses often rely heavily on vision to complete their daily activities. They thus struggle in situations where vision is overloaded, such as multitasking, or unavailable, such as poor lighting conditions. Non-disabled individuals can easily accomplish such tasks due to tactile reflexes and haptic sensation guiding their upper-limb motor coordination. Based on these principles, we developed and tested two novel prosthesis systems that incorporate autonomous controllers and provide the user with touch-location feedback through either vibration or distributed pressure. These capabilities were made possible by installing a custom contact-location sensor on the fingers of a commercial prosthetic hand, along with a custom pressure sensor on the thumb. We compared the performance of the two systems against a standard myoelectric prosthesis and a myoelectric prosthesis with only autonomous controllers in a difficult reach-to-pick-and-place task conducted without direct vision. Results from 40 non-disabled participants in this between-subjects study indicated that vibrotactile feedback combined with synthetic reflexes proved significantly more advantageous than the standard prosthesis in several of the task milestones. In addition, vibrotactile feedback and synthetic reflexes improved grasp placement compared to only synthetic reflexes or pressure feedback combined with synthetic reflexes. These results indicate that autonomous controllers and haptic feedback together facilitate success in dexterous tasks without vision, and that the type of haptic display matters.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Retroalimentación , Tecnología Háptica , Diseño de Prótesis , Tacto , Retroalimentación Sensorial
3.
J Neuroeng Rehabil ; 16(1): 70, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186005

RESUMEN

BACKGROUND: Despite the technological advancements in myoelectric prostheses, body-powered prostheses remain a popular choice for amputees, in part due to the natural sensory advantage they provide. Research on haptic feedback in myoelectric prostheses has delivered mixed results. Furthermore, there is limited research comparing various haptic feedback modalities in myoelectric prostheses. In this paper, we present a comparison of the feedback intrinsically present in body-powered prostheses (joint-torque feedback) to a commonly proposed feedback modality for myoelectric prostheses (vibrotactile feedback). In so doing, we seek to understand whether the advantages of kinesthetic feedback present in body-powered prostheses translate to myoelectric prostheses, and whether there are differences between kinesthetic and cutaneous feedback in prosthetic applications. METHODS: We developed an experimental testbed that features a cable-driven, voluntary-closing 1-DoF prosthesis, a capstan-driven elbow exoskeleton, and a vibrotactile actuation unit. The system can present grip force to users as either a flexion moment about the elbow or vibration on the wrist. To provide an equal comparison of joint-torque and vibrotactile feedback, a stimulus intensity matching scheme was utilized. Non-amputee participants (n=12) were asked to discriminate objects of varying stiffness with the prosthesis in three conditions: no haptic feedback, vibrotactile feedback, and joint-torque feedback. RESULTS: Results indicate that haptic feedback increased discrimination accuracy over no haptic feedback, but the difference between joint-torque feedback and vibrotactile feedback was not significant. In addition, our results highlight nuanced differences in performance depending on the objects' stiffness, and suggest that participants likely pay less attention to incidental cues with the addition of haptic feedback. CONCLUSION: Even when haptic feedback is not modality matched to the task, such as in the case of vibrotactile feedback, performance with a myoelectric prosthesis can improve significantly. This implies it is possible to achieve the same benefits with vibrotactile feedback, which is cheaper and easier to implement than other forms of feedback.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial , Diseño de Prótesis , Adulto , Amputados , Femenino , Humanos , Masculino , Torque , Vibración , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...