Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 221(4): 1890-1905, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30288745

RESUMEN

Chitin is generally considered to be present in centric diatoms but not in pennate species. Many aspects of chitin biosynthetic pathways have not been explored in diatoms. We retrieved chitin metabolic genes from pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom genomes. Chitin deacetylase (CDA) genes from each genome (PtCDA and TpCDA) were overexpressed in P. tricornutum. We performed comparative analysis of their sequence structure, phylogeny, transcriptional profiles, localization and enzymatic activities. The chitin relevant proteins show complex subcellular compartmentation. PtCDA was likely acquired by horizontal gene transfer from prokaryotes, whereas TpCDA has closer relationships with sequences in Opisthokonta. Using transgenic P. tricornutum lines expressing CDA-green fluorescent protein (GFP) fusion proteins, PtCDA predominantly localizes to Golgi apparatus whereas TpCDA localizes to endoplasmic reticulum/chloroplast endoplasmic reticulum membrane. CDA-GFP overexpression upregulated the transcription of chitin synthases and potentially enhanced the ability of chitin synthesis. Although both CDAs are active on GlcNAc5 , TpCDA is more active on the highly acetylated chitin polymer DA60. We have addressed the ambiguous characters of CDAs from P. tricornutum and T. pseudonana. Differences in localization, evolution, expression and activities provide explanations underlying the greater potential of centric diatoms for chitin biosynthesis. This study paves the way for in vitro applications of novel CDAs.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Amidohidrolasas/química , Pared Celular/química , Pared Celular/metabolismo , Quitina/metabolismo , Quitosano/metabolismo , Diatomeas/crecimiento & desarrollo , Evolución Molecular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Organismos Modificados Genéticamente , Filogenia , Polisacáridos/química , Polisacáridos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
2.
New Phytol ; 221(3): 1303-1316, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30216452

RESUMEN

Diatom dominance in contemporary aquatic environments indicates that they have developed unique and effective mechanisms to cope with the rapid and considerable fluctuations that characterize these environments. In view of their evolutionary history from a secondary endosymbiosis, inter-organellar regulation of biochemical activities may be of particular relevance. Diatom mitochondrial alternative oxidase (AOX) is believed to play a significant role in supplying chloroplasts with ATP produced in the mitochondria. Using the model diatom Phaeodactylum tricornutum we generated AOX knockdown lines, and followed sensitivity to stressors, photosynthesis and transcriptome and metabolome profiles of wild-type and knockdown lines. We show here that expression of the AOX gene is upregulated by various stresses including H2 O2 , heat, high light illumination, and iron or nitrogen limitation. AOX knockdown results in hypersensitivity to stress. Knockdown lines also show significantly reduced photosynthetic rates and their chloroplasts are more oxidized. Comparisons of transcriptome and metabolome profiles suggest a strong impact of AOX activity on gene expression, which is carried through to the level of the metabolome. Our data provide evidence for the involvement of mitochondrial AOX in processes central to the cell biology of diatoms, revealing that cross-talk between mitochondria and chloroplasts is crucial for maintaining sensitivity to changing environments.


Asunto(s)
Organismos Acuáticos/enzimología , Cloroplastos/metabolismo , Diatomeas/enzimología , Diatomeas/fisiología , Regulación hacia Abajo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Antioxidantes/metabolismo , Organismos Acuáticos/fisiología , Glutatión/metabolismo , Metabolómica , Oxidación-Reducción , Fotosíntesis , Transcriptoma/genética
3.
Biol Open ; 7(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012553

RESUMEN

The Notch signalling pathway is a conserved and widespread signalling paradigm, and its misregulation has been implicated in numerous disorders, including cancer. The output of Notch signalling depends on the nuclear accumulation of the Notch receptor intracellular domain (ICD). Using the Caenorhabditis elegans germline, where GLP-1/Notch-mediated signalling is essential for maintaining stem cells, we monitored GLP-1 in vivo We found that the nuclear enrichment of GLP-1 ICD is dynamic: while the ICD is enriched in germ cell nuclei during larval development, it is depleted from the nuclei in adult germlines. We found that this pattern depends on the ubiquitin proteolytic system and the splicing machinery and, identified the splicing factor PRP-19 as a candidate E3 ubiquitin ligase required for the nuclear depletion of GLP-1 ICD.

4.
PLoS One ; 13(6): e0199197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29958295

RESUMEN

The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKß. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.


Asunto(s)
Quinasa I-kappa B/inmunología , Inmunidad Innata , Proteínas Oncogénicas/inmunología , Péptido Sintasas/inmunología , Transducción de Señal/inmunología , Animales , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Ratones , Proteína NEDD8/genética , Proteína NEDD8/inmunología , Proteínas Oncogénicas/genética , Péptido Sintasas/genética , Fosforilación/genética , Fosforilación/inmunología , Células RAW 264.7 , Transducción de Señal/genética
5.
Mol Cell Oncol ; 3(5): e1199265, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27857970

RESUMEN

The mitotic kinase polo like kinase 1 (PLK1) is overexpressed in many cancers and its inhibition slows down proliferation and increases apoptosis in cancer cell lines. Understanding how PLK1 is activated is therefore crucial for the development of novel PLK1 inhibitors with anticancer properties. We recently identified a conserved regulatory loop leading to PLK1 activation that involves cyclin-dependent kinase 1 (CDK1).

6.
Cell Cycle ; 15(23): 3177-3182, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27831827

RESUMEN

Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Puntos de Control del Ciclo Celular , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Fosforilación , Quinasa Tipo Polo 1
7.
Cell Rep ; 15(3): 510-518, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27068477

RESUMEN

The conserved Bora protein is a Plk1 activator, essential for checkpoint recovery after DNA damage in human cells. Here, we show that Bora interacts with Cyclin B and is phosphorylated by Cyclin B/Cdk1 at several sites. The first 225 amino acids of Bora, which contain two Cyclin binding sites and three conserved phosphorylated residues, are sufficient to promote Plk1 phosphorylation by Aurora A in vitro. Mutating the Cyclin binding sites or the three conserved phosphorylation sites abrogates the ability of the N terminus of Bora to promote Plk1 activation. In human cells, Bora-carrying mutations of the three conserved phosphorylation sites cannot sustain mitotic entry after DNA damage. In C. elegans embryos, mutation of the three conserved phosphorylation sites in SPAT-1, the Bora ortholog, results in a severe mitotic entry delay. Our results reveal a crucial and conserved role of phosphorylation of the N terminus of Bora for Plk1 activation and mitotic entry.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/química , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/química , Secuencia Conservada , Ciclina B/metabolismo , Daño del ADN , Embrión no Mamífero/citología , Activación Enzimática , Células HeLa , Humanos , Mitosis , Fosforilación , Quinasa Tipo Polo 1
8.
J Cell Sci ; 129(7): 1441-54, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906416

RESUMEN

Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND-cullin-DCNL complexes might represent 'reserve' CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogénicas/metabolismo , Péptido Sintasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteína NEDD8 , Unión Proteica , Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética
9.
Genome Biol ; 16: 102, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25990474

RESUMEN

BACKGROUND: Nucleosomes are the building blocks of chromatin where gene regulation takes place. Chromatin landscapes have been profiled for several species, providing insights into the fundamental mechanisms of chromatin-mediated transcriptional regulation of gene expression. However, knowledge is missing for several major and deep-branching eukaryotic groups, such as the Stramenopiles, which include the diatoms. Diatoms are highly diverse and ubiquitous species of phytoplankton that play a key role in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. RESULTS: Here, we use high resolution mass spectrometry to identify a full repertoire of post-translational modifications on histones of the marine diatom Phaeodactylum tricornutum, including eight novel modifications. We map five histone marks coupled with expression data and show that P. tricornutum displays both unique and broadly conserved chromatin features, reflecting the chimeric nature of its genome. Combinatorial analysis of histone marks and DNA methylation demonstrates the presence of an epigenetic code defining activating or repressive chromatin states. We further profile three specific histone marks under conditions of nitrate depletion and show that the histone code is dynamic and targets specific sets of genes. CONCLUSIONS: This study is the first genome-wide characterization of the histone code from a stramenopile and a marine phytoplankton. The work represents an important initial step for understanding the evolutionary history of chromatin and how epigenetic modifications affect gene expression in response to environmental cues in marine environments.


Asunto(s)
Diatomeas/metabolismo , Código de Histonas , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Cromatina/metabolismo , Diatomeas/genética , Expresión Génica , Genómica , Espectrometría de Masas , Nitratos/metabolismo , Nucleosomas/metabolismo
10.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25855810

RESUMEN

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Complejo del Señalosoma COP9 , Línea Celular , Células Cultivadas , Proteínas Cullin/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo
11.
Curr Biol ; 25(3): 364-371, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25557662

RESUMEN

Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments.


Asunto(s)
Diatomeas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Fitoplancton/metabolismo , Agua de Mar/química , Perfilación de la Expresión Génica , Hierro/farmacocinética , Biología Marina , Estructura Terciaria de Proteína , Especificidad de la Especie
12.
Mar Genomics ; 16: 67-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859489

RESUMEN

Post-translational modifications of histones affect many biological processes by influencing higher order chromatin structure that affects gene and genome regulation. It is therefore important to develop methods for extracting histones while maintaining their native post-translational modifications. While histone extraction protocols have been developed in multicellular and single celled organisms such as yeast and Arabidopsis, they are inefficient in diatoms that have a silica cell wall that is likely to hinder histone extraction. We report in this work a rapid and reliable method for extraction of large amounts of high quality histones from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. The protocol is an important enabling step permitting downstream applications such as western blotting and mass spectrometry.

13.
Cell Cycle ; 13(24): 3867-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25558830

RESUMEN

CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein ßTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fosfatasas cdc25/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Células HeLa , Humanos , Mitosis , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Huso Acromático/metabolismo , Fosfatasas cdc25/genética , Quinasa Tipo Polo 1
14.
Mar Genomics ; 13: 21-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24315927

RESUMEN

Post-translational modifications of histones affect many biological processes by influencing higher order chromatin structure that affects gene and genome regulation. It is therefore important to develop methods for extracting histones while maintaining their native post-translational modifications. While histone extraction protocols have been developed in multicellular and single celled organisms such as yeast and Arabidopsis, they are inefficient in diatoms that have a silica cell wall that is likely to hinder histone extraction. We report in this work a rapid and reliable method for extraction of large amounts of high quality histones from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. The protocol is an important enabling step permitting downstream applications such as western blotting and mass spectrometry.


Asunto(s)
Técnicas de Química Analítica/métodos , Diatomeas/genética , Histonas/aislamiento & purificación , Procesamiento Proteico-Postraduccional/genética , Western Blotting , Núcleo Celular/metabolismo , Precipitación Química , Electroforesis en Gel de Poliacrilamida , Histonas/química , Especificidad de la Especie , Espectrometría de Masas en Tándem , Ácido Tricloroacético
15.
Nat Commun ; 4: 1641, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23535662

RESUMEN

Cullin-RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8-dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1-Cdc53-F-box) Cullin-RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1-mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation-deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Carbono/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
J Mol Biol ; 421(1): 27-9, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22608973

RESUMEN

Ubiquitin and ubiquitin-like proteins use unique E1, E2, and E3 enzymes for conjugation to their substrates. We and others have recently reported that increases in the relative concentration of the ubiquitin-like protein NEDD8 over ubiquitin lead to activation of NEDD8 by the ubiquitin E1 enzyme. We now show that this results in erroneous conjugation of NEDD8 to ubiquitin substrates, such as p53, Caspase 7, and Hif1α, demonstrating that overexpression of NEDD8 is not appropriate for identification of substrates of the NEDD8 pathway.


Asunto(s)
Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Caspasa 7/metabolismo , Células Cultivadas/efectos de los fármacos , Ciclopentanos/farmacología , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína NEDD8 , Pirimidinas/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/genética
17.
Biochem J ; 441(3): 927-36, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22004789

RESUMEN

Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ubiquitinas/metabolismo , Animales , Ácidos Borónicos/farmacología , Bortezomib , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteína NEDD8 , Pirazinas/farmacología , Transfección , Ubiquitina/análisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Ubiquitinas/análisis , Ubiquitinas/genética
18.
Cell Cycle ; 9(21): 4338-50, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21051950

RESUMEN

The dual-specificity phosphatase CDC25B, a key regulator of CDK/Cyclin complexes, is considered as the starter of mitosis. It is an unstable protein, degraded by the proteasome, but often overexpressed in various human cancers. Based on experiments carried out in Xenopus eggs, and on video microscopy studies in mammalian cells, it has been proposed that human CDC25B degradation is dependent of the F-box protein ßTrCp, but the involvement of this latter protein was not formally demonstrated yet. Here, we show that indeed, in mammalian cells, ßTrCp participates to CDC25B turnover, and is required for the complete degradation of CDC25B at the metaphase-anaphase transition. Using a stabilized mutant of CDC25B, which cannot interact anymore with ßTrCp, we further show that, during late phases of mitosis, reduced degradation of CDC25B leads to an extended window of expression of the protein, which in turn induces a delay in mitosis exit and entails mitotic defects such as chromosomes missegregation. These findings show that a dysfunction in the rapid and precisely controlled degradation of CDC25B at the metaphase-anaphase transition is sufficient to cause genomic instability and suggest that, in human tissues, pathologic stabilization or untimed expression of CDC25B could contribute to tumorigenesis.


Asunto(s)
Proteínas con Repetición de beta-Transducina/metabolismo , Fosfatasas cdc25/metabolismo , Anafase , Animales , Línea Celular Tumoral , Segregación Cromosómica , Humanos , Metafase , Mitosis , Mutación , Fosforilación , Xenopus , Fosfatasas cdc25/genética
19.
Mol Biol Cell ; 19(4): 1706-16, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18256291

RESUMEN

In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged alpha7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28gamma regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28gamma complexes in the NS. Here, we show that knockdown of these complexes by small interfering RNAs directed against PA28gamma strongly impacts the organization of the NS. Further analysis of PA28gamma-depleted cells demonstrated an alteration of intranuclear trafficking of SR proteins. Thus, our data identify proteasome-PA28gamma complexes as a novel regulator of NS organization and function, acting most likely through selective proteolysis. These results constitute the first demonstration of a role of a specific proteasome complex in a defined subnuclear compartment and suggest that proteolysis plays important functions in the precise control of splicing factors trafficking within the nucleus.


Asunto(s)
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte Activo de Núcleo Celular , Autoantígenos/química , Autoantígenos/genética , Línea Celular , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma , Subunidades de Proteína , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
Cell Cycle ; 4(12): 1783-7, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16258285

RESUMEN

Aurora-C is the third member of the aurora serine/threonine kinase family and was found only in mammals. Because Aurora-C is overexpressed in many different types of cancer cells we decided to analyze the consequences of Aurora-C overexpression in human cells. We first investigated the subcellular localization of overexpressed GFP-Aurora-C in mitosis and interphase in HeLa cells. As expected, during mitosis, we found that Aurora-C mimics Aurora-B. Surprisingly, in few interphase cells, we found that Aurora-C localized to the centrosome, like Aurora-A. We then examined the phenotype generated by Aurora-C overexpression. Basically it looked similar to the phenotypes observed after overexpression of the other Aurora kinases. We observed an augmentation of polyploid cells containing more than two centrosomes. More interestingly this phenotype was aggravated in the absence of a functional p53. Although the physiological function of Aurora-C in somatic cells remains to be clarified, our results, just like for the two other Aurora kinases, raised the question of a role of Aurora-C in the development and progression of cancer especially in the presence of mutated p53.


Asunto(s)
Centrosoma/patología , Expresión Génica/genética , Poliploidía , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Aurora Quinasa B , Aurora Quinasa C , Aurora Quinasas , Células Cultivadas , Cromosomas Humanos/genética , Células HeLa , Humanos , Interfase/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...