Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Anim Ecol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864368

RESUMEN

Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.

2.
Mol Ecol ; 32(8): 2071-2091, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36744391

RESUMEN

Trophic rewilding is increasingly applied in restoration efforts, with the aim of reintroducing the ecological functions provided by large-bodied mammals and thereby promote self-regulating, biodiverse ecosystems. However, empirical evidence for the effects of megafauna introductions on the abundance and richness of other organisms such as plants and invertebrates, and the mechanisms involved still need strengthening. In this study, we use environmental DNA (eDNA) metabarcoding of dung from co-existing feral cattle and horses to assess the seasonal variation in plant diet and dung-associated arthropods and nematodes. We found consistently high diet richness of horses, with low seasonal variability, while the generally lower dietary diversity of cattle increased substantially during summer. Intriguingly, season-specific diets differed, with a greater proportion of trees in the horses' diet during winter, where cattle relied more on shrubs. Graminoids were predominantly found in the diet of horses, but were generally underrepresented compared to previous studies, possibly due to the high prevalence of forbs in the study area. Dung-associated arthropod richness was higher for cattle, largely due to a high richness of flies during summer. Several species of dung-associated arthropods were found primarily in dung from one of the two herbivores, and our data confirmed known patterns of seasonal activity. Nematode richness was constantly higher for horses, and nematode communities were markedly different between the two species. Our results demonstrate complementary effects of cattle and horses through diet differences and dung-associated invertebrate communities, enhancing our understanding of large herbivore effects on vegetation and associated biodiversity. These results are directly applicable for decision-making in rewilding projects, suggesting biodiversity-benefits by inclusion of functionally different herbivores.


Asunto(s)
Artrópodos , Ecosistema , Animales , Bovinos , Caballos , Estaciones del Año , Invertebrados , Biodiversidad , Mamíferos , Plantas , Dieta/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...