Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Haematologica ; 107(2): 519-531, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33567808

RESUMEN

Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2'MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface Pselectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 mM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2'MOE ASO 487660 had no detectable platelet effects, while 2'MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.


Asunto(s)
Plaquetas , Oligonucleótidos Antisentido , Humanos , Leucocitos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Activación Plaquetaria , Recuento de Plaquetas
2.
Blood Adv ; 3(20): 3092-3098, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31648331

RESUMEN

In addition to their primary roles in hemostasis and thrombosis, platelets participate in many other physiological and pathological processes, including, but not limited to inflammation, wound healing, tumor metastasis, and angiogenesis. Among their most interesting properties is the large number of bioactive proteins stored in their α-granules, the major storage granule of platelets. We previously showed that platelets differentially package pro- and antiangiogenic proteins in distinct α-granules that undergo differential release upon platelet activation. Nevertheless, how megakaryocytes achieve differential packaging is not fully understood. In this study, we use a mouse megakaryocyte culture system and endocytosis assay to establish when and where differential packaging occurs during platelet production. Live cell microscopy of primary mouse megakaryocytes incubated with fluorescently conjugated fibrinogen and endostatin showed differential endocytosis and packaging of the labeled proteins into distinct α-granule subpopulations. Super-resolution microscopy of mouse proplatelets and human whole-blood platelet α-granules simultaneously probed for 2 different membrane proteins (VAMP-3 and VAMP-8), and multiple granular content proteins (bFGF, ENDO, TSP, VEGF) confirmed differential packaging of protein contents into α-granules. These data suggest that megakaryocytes differentially sort and package α-granule contents, which are preserved as α-granule subpopulations during proplatelet extension and platelet production.


Asunto(s)
Plaquetas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Megacariocitos/metabolismo , Animales , Transporte Biológico , Biomarcadores , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Megacariocitos/citología , Ratones , Trombopoyesis
3.
J Clin Invest ; 127(5): 1714-1724, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28375155

RESUMEN

The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.


Asunto(s)
Artritis Experimental , Megacariocitos , Proteínas Proto-Oncogénicas c-kit , Membrana Sinovial , Animales , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/patología , Fibroblastos/inmunología , Fibroblastos/patología , Inmunoglobulina G/inmunología , Interleucina-1/genética , Interleucina-1/inmunología , Mastocitos/inmunología , Mastocitos/patología , Megacariocitos/inmunología , Megacariocitos/patología , Ratones , Ratones Noqueados , Subunidad p45 del Factor de Transcripción NF-E2/genética , Subunidad p45 del Factor de Transcripción NF-E2/inmunología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/inmunología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/inmunología , Membrana Sinovial/inmunología , Membrana Sinovial/patología
4.
Trends Biochem Sci ; 42(5): 327-329, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28385393

RESUMEN

Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome.


Asunto(s)
Emprendimiento , Investigadores
5.
Platelets ; 28(5): 472-477, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28112988

RESUMEN

Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.


Asunto(s)
Reactores Biológicos , Plaquetas , Técnicas de Cultivo de Célula , Megacariocitos , Animales , Plaquetas/citología , Plaquetas/metabolismo , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo
7.
Blood ; 125(5): 860-8, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25411426

RESUMEN

Bone marrow megakaryocytes produce platelets by extending long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Although microtubules are known to regulate platelet production, the underlying mechanism of proplatelet elongation has yet to be resolved. Here we report that proplatelet formation is a process that can be divided into repetitive phases (extension, pause, and retraction), as revealed by differential interference contrast and fluorescence loss after photoconversion time-lapse microscopy. Furthermore, we show that microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein under static and physiological shear stress by using fluorescence recovery after photobleaching in proplatelets with fluorescence-tagged ß1-tubulin. A refined understanding of the specific mechanisms regulating platelet production will yield strategies to treat patients with thrombocythemia or thrombocytopenia.


Asunto(s)
Plaquetas/metabolismo , Dineínas Citoplasmáticas/metabolismo , Megacariocitos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Plaquetas/citología , Diferenciación Celular , Citoplasma/metabolismo , Dineínas Citoplasmáticas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Expresión Génica , Mecanotransducción Celular , Megacariocitos/citología , Ratones , Microscopía de Interferencia , Microtúbulos/química , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Mecánico , Trombopoyesis/genética , Tubulina (Proteína)/genética
8.
Trends Biochem Sci ; 39(12): 571-3, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25458606

RESUMEN

An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose.


Asunto(s)
Bioquímica , Selección de Profesión , Educación de Postgrado , Emprendimiento , Bioquímica/economía , Bioquímica/educación , Canadá , Educación de Postgrado/economía , Educación de Postgrado/tendencias , Humanos , Salarios y Beneficios , Estados Unidos , Recursos Humanos
9.
Stem Cell Reports ; 3(5): 817-31, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25418726

RESUMEN

Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the ß2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.


Asunto(s)
Plaquetas/citología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Megacariocitos/citología , Animales , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestructura , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Células Cultivadas , Técnicas de Inactivación de Genes , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Leucosialina/metabolismo , Masculino , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Ratones Endogámicos NOD , Ratones SCID , Microscopía Electrónica , Microscopía Fluorescente , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transfusión de Plaquetas/métodos , Reproducibilidad de los Resultados , Trasplante Heterólogo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
10.
Cell ; 158(5): 1033-1044, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171405

RESUMEN

Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.


Asunto(s)
Plaquetas/enzimología , Embrión de Mamíferos/enzimología , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Desarrollo Embrionario , Glicosilación , Humanos , Ratones , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/química , Vías Secretoras
12.
Br J Haematol ; 165(2): 227-36, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24499183

RESUMEN

Platelets are essential for haemostasis, and thrombocytopenia (platelet counts <150 × 10(9) /l) is a major clinical problem encountered across a number of conditions, including immune thrombocytopenic purpura, myelodysplastic syndromes, chemotherapy, aplastic anaemia, human immunodeficiency virus infection, complications during pregnancy and delivery, and surgery. Circulating blood platelets are specialized cells that function to prevent bleeding and minimize blood vessel injury. Platelets circulate in their quiescent form, and upon stimulation, activate to release their granule contents and spread on the affected tissue to create a physical barrier that prevents blood loss. The current model of platelet formation states that large progenitor cells in the bone marrow, called megakaryocytes, release platelets by extending long, branching processes, designated proplatelets, into sinusoidal blood vessels. This review will focus on different factors that impact megakaryocyte development, proplatelet formation and platelet release. It will highlight recent studies on thrombopoeitin-dependent megakaryocyte maturation, endomitosis and granule formation, cytoskeletal contributions to proplatelet formation, the role of apoptosis, and terminal platelet formation and release.


Asunto(s)
Megacariocitos/fisiología , Trombopoyesis/fisiología , Actinas/metabolismo , Animales , Apoptosis , Plaquetas/citología , Plaquetas/metabolismo , Membrana Celular/metabolismo , Humanos , Microtúbulos/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rho/metabolismo
13.
Blood ; 124(12): 1857-67, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25606631

RESUMEN

Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.


Asunto(s)
Reactores Biológicos , Plaquetas , Técnicas Analíticas Microfluídicas , Animales , Materiales Biomiméticos , Plaquetas/citología , Plaquetas/fisiología , Diseño de Equipo , Humanos , Megacariocitos/citología , Megacariocitos/fisiología , Ratones , Modelos Biológicos , Transfusión de Plaquetas , Trombopoyesis
14.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24119684

RESUMEN

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Asunto(s)
Anemia Macrocítica/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Adolescente , Animales , Niño , Eritropoyesis/genética , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mitocondriales/genética , Mutación , Pez Cebra/genética
15.
Trends Mol Med ; 19(10): 583-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23953478

RESUMEN

Animating complex biological processes contextualizes them within their underlying physiology, identifies gaps in our mechanistic understanding, affirms the importance of continued research, and provides a bridge between academic scientists and the general public. Here, two videos illustrate the clinical value of and translate state-of-the-art research in platelet production.


Asunto(s)
Recursos Audiovisuales , Plaquetas/fisiología , Comunicación , Humanos
16.
Blood ; 122(7): 1305-11, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23838351

RESUMEN

During thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology. We previously observed that protein kinase Cepsilon (PKCε), a member of the protein kinase C family of serine/threonine-kinases, expression varies during human megakaryocyte differentiation and modulates megakaryocyte maturation and platelet release. Here we used an in vitro model of murine platelet production to investigate a potential role for PKCε in proplatelet formation. By immunofluorescence we observed that PKCε colocalizes with α/ß-tubulin in specific areas of the marginal tubular-coil in proplatelets. Moreover, we found that PKCε expression escalates during megakarocyte differentiation and remains elevated in proplatelets, whereas the active form of RhoA is substantially downregulated in proplatelets. PKCε inhibition resulted in lower proplatelet numbers and larger diameter platelets in culture as well as persistent RhoA activation. Finally, we demonstrate that pharmacological inhibition of RhoA is capable of reversing the proplatelet defects mediated by PKCε inhibition. Collectively, these data indicate that by regulating RhoA activity, PKCε is a critical mediator of mouse proplatelet formation in vitro.


Asunto(s)
Plaquetas/citología , Megacariocitos/citología , Proteína Quinasa C-epsilon/metabolismo , Trombopoyesis/fisiología , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Animales , Plaquetas/metabolismo , Western Blotting , Diferenciación Celular , Células Cultivadas , Feto/citología , Feto/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Hígado/citología , Hígado/metabolismo , Megacariocitos/metabolismo , Ratones , ARN Interferente Pequeño/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
17.
Blood ; 121(1): 188-96, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23160460

RESUMEN

Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in ß-catenin expression. ß-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6(-/-)), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production.


Asunto(s)
Megacariocitos/citología , Trombopoyesis/fisiología , Vía de Señalización Wnt/fisiología , Animales , Plaquetas/citología , Línea Celular , Células Cultivadas/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Hígado/embriología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/deficiencia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Ratones Noqueados , Proteínas Recombinantes/farmacología , Trombopoyesis/genética , Proteínas Wnt/farmacología , Proteína Wnt3A/farmacología , beta Catenina/biosíntesis , beta Catenina/genética
18.
Blood ; 120(24): 4859-68, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22972982

RESUMEN

We recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells. By ChIP-seq, we show that 5 of the 68 loci pinpoint a MEIS1 binding event within a group of 252 MK-overexpressed genes. In one such locus in DNM3, regulating platelet volume, the MEIS1 binding site falls within a region acting as an alternative promoter that is solely used in megakaryocytes, where allelic variation dictates different levels of a shorter transcript. The importance of dynamin activity to the latter stages of thrombopoiesis was confirmed by the observation that the inhibitor Dynasore reduced murine proplatelet for-mation in vitro.


Asunto(s)
Plaquetas/metabolismo , Dinamina III/genética , Genoma Humano/genética , Proteínas de Homeodominio/genética , Megacariocitos/metabolismo , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas/genética , Animales , Sitios de Unión/genética , Plaquetas/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Expresión Génica , Variación Genética , Proteínas de Homeodominio/metabolismo , Humanos , Hidrazonas/farmacología , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/metabolismo , Recuento de Plaquetas , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Transcripción Genética
19.
Handb Exp Pharmacol ; (210): 3-22, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22918725

RESUMEN

Platelets are anucleate, discoid cells, roughly 2-3 µm in diameter that function primarily as regulators of hemostasis, but also play secondary roles in angiogensis and innate immunity. Although human adults contain nearly one trillion platelets in circulation that are turned over every 8-10 days, our understanding of the mechanisms involved in platelet production is still incomplete. Platelets stem from large (30-100 µm) nucleated cells called megakaryocytes that reside primarily in the bone marrow. During maturation megakaryocytes extend long proplatelet elongations into sinusoidal blood vessels from which platelets ultimately release. During this process, platelets develop a number of distinguishable structural elements including: a delimited plasma membrane; invaginations of the surface membrane that form the open canalicular system (OCS); a closed-channel network of residual endoplasmic reticulum that form the dense tubular system (DTS); a spectrin-based membrane skeleton; an actin-based cytoskeletal network; a peripheral band of microtubules; and numerous organelles including α-granules, dense-granules, peroxisomes, lysosomes, and mitochondria. Proplatelet elongation and platelet production is an elaborate and complex process that defines the morphology and ultrastructure of circulating platelets, and is critical in understanding their increasingly numerous and varied biological functions.


Asunto(s)
Plaquetas/fisiología , Plaquetas/ultraestructura , Animales , Plaquetas/citología , Citoesqueleto/ultraestructura , Humanos , Megacariocitos/fisiología , Orgánulos/ultraestructura
20.
J Cell Biol ; 198(4): 561-74, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22908309

RESUMEN

Human and murine platelets (PLTs) variably express toll-like receptors (TLRs), which link the innate and adaptive immune responses during infectious inflammation and atherosclerotic vascular disease. In this paper, we show that the TLR9 transcript is specifically up-regulated during pro-PLT production and is distributed to a novel electron-dense tubular system-related compartment we have named the T granule. TLR9 colocalizes with protein disulfide isomerase and is associated with either VAMP 7 or VAMP 8, which regulates its distribution in PLTs on contact activation (spreading). Preincubation of PLTs with type IV collagen specifically increased TLR9 and CD62P surface expression and augmented oligodeoxynucleotide (ODN) sequestration and PLT clumping upon addition of bacterial/viral ODNs. Collectively, this paper (a) tracks TLR9 to a new intracellular compartment in PLTs and (b) describes a novel mechanism of TLR9 organization and signaling in human PLTs.


Asunto(s)
Plaquetas/fisiología , Gránulos Citoplasmáticos/fisiología , Activación Plaquetaria/fisiología , Transducción de Señal/fisiología , Receptor Toll-Like 9/fisiología , Animales , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/patología , Plaquetas/ultraestructura , Compartimento Celular/genética , Compartimento Celular/fisiología , Gránulos Citoplasmáticos/ultraestructura , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/ultraestructura , Humanos , Ratones , Activación Plaquetaria/genética , Transducción de Señal/genética , Trombopoyesis/genética , Trombopoyesis/fisiología , Receptor Toll-Like 9/biosíntesis , Receptor Toll-Like 9/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA