Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38938038

RESUMEN

Objective: Black soldier fly (BSF) as an animal protein feed source is currently becoming a research hot topic. This study investigated the effects of the BSF as a protein feed source for goats on slaughter performance, muscle nutrient composition, amino acids, fatty acids, minerals, and antioxidant levels. Methods: Thirty Qianbei Ma goats (20.30 ± 1.09 kg) were randomly divided into three groups: the control group (GRPC) supplemented with 10% full-fat soybean, treatment 1 (GRPU) supplemented with 10% untreated BSF, and treatment 2 (GRPT) supplemented with 10% heat-treated BSF. One-way ANOVA among groups (with Fisher's least significant difference (LSD) post hoc comparison) was used in this study. Results: The nutrients, amino acids, fatty acids, minerals, and antioxidants in muscle were analyzed. The results showed that there were no significant differences in the moisture, dry matter (DM), crude protein (CP), ash, amino acids, and mineral content of the muscles among the three feeding groups. The slaughter rate and carcass weight of the GRPU and GRPT groups were significantly lower (p<0.05). The overall meat quality of the GRPU and GRPT groups decreased (p<0.05). The individual unsaturated fatty acids and total unsaturated fatty acids in the GRPU group were higher (p<0.05) than those in the GRPC and GRPT groups. Both GRPU and GRPT decreased (p<0.05) the antioxidant capacity of the meat. Conclusion: Therefore, the heat-treated BSF had a better effect on meat quality compared to untreated BSF, but there were greater negative effects on the meat quality of GRPU and GRPT than GRPC.

2.
Insects ; 15(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38786899

RESUMEN

The purpose of this experiment was to evaluate the effects of different levels of BSF on rumen in vitro fermentation gas production, methane (CH4) production, ammonia nitrogen (NH3-N), and volatile fatty acids (VFAs). The experiment comprised four treatments, each with five replicates. The control group contained no BSF (BSF0), and the treatment groups contained 5% (BSF5), 10% (BSF10), and 15% (BSF15) BSF, respectively. Results showed that at 3 h, 9 h, and 24 h, gas production in BSF5 and BSF10 was significantly higher than in BSF0 and BSF15 (p < 0.05). Gas production in BSF5 and BSF10 was higher than in BSF0, while gas production in BSF15 was lower than in BSF0. At 6 h and 12 h, CH4 emission in BSF15 was significantly lower than in the other three groups (p < 0.05). There were no differences in the pH of in vitro fermentation after BSF addition (p > 0.05). At 3 h, NH3-N levels in BSF10 and BSF15 were significantly higher than in BSF0 and BSF5 (p < 0.05). At 6 h, NH3-N levels in BSF5 and BSF10 were significantly higher than in BSF0 and BSF15 (p < 0.05). Acetic acid, propionic acid, butyric acid, and total VFAs in BSF0, BSF5, and BSF10 were significantly higher than in BSF15 (p < 0.05). In conclusion, gas production, CH4 emission, NH3-N, acetic acid, propionic acid, butyric acid, and VFAs were highest in BSF5 and BSF10 and lowest in BSF15.

3.
Front Vet Sci ; 11: 1364589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562916

RESUMEN

Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.

4.
Animals (Basel) ; 14(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473195

RESUMEN

Oxidative stress resulting from an imbalance between oxidants and antioxidants can cause damage to certain cellular components. Purple Napier grass, a semi-dwarf variety, is characterized by its purple leaves and contains anthocyanins, which provide it with antioxidant properties. This study examined the effects of feeding purple Napier grass ("Prince") silage to lactating dairy goats on blood antioxidant activity, milk yield, and milk quality. Eighteen female Saanen crossbred goats, weighing 52.34 ± 2.86 kg and producing milk for 14 ± 2 days, were systematically divided into three groups based on their lactation period in the previous cycle as follows: early, mid, and late lactation. In a randomized complete block design (RCBD), treatments were randomly allocated to six animals in each block. The dairy goats were fed a total mixed ration (TMR) consisting of the three following treatments: control (100% Napier Pakchong 1 grass silage), 50% (a 50% replacement of the control with purple Napier grass silage), and 100% (100% purple Napier grass silage). The results show that goats who were fed a diet including 100% purple Napier grass silage showed higher levels of certain milk contents, especially with regard to lactose, when compared to those who were fed a control diet, as well as a diet with a 50% replacement of purple Napier grass silage. The somatic cell count (SCC) of these goats was reduced. In terms of antioxidant activity, dairy goats who were fed 100% purple Napier grass silage showed higher levels of enzymes in both plasma and milk, including glutathione s-transferase, total antioxidant capacity, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl radical, compared to the control group and the 50% replacement group. The plasma and milk of these goats showed lower levels of malondialdehyde. The dairy goats who were fed a 100% purple Napier grass silage diet showed higher concentrations of anthocyanins, including C3G, P3G, Peo3G, M3G, Cya, Pel, and total anthocyanins in milk, when compared to the control group and the 50% replacement group. The increased replacement of purple Napier grass silage led to significant differences in lactose levels, somatic cell count, glutathione S-transferase, total antioxidant capacity, superoxide dismutase, 2,2-diphenyl-1-picrylhydrazyl radical, and the composition of anthocyanins. This study provides evidence to support the use of purple Napier grass silage as a beneficial source of roughage for lactating dairy goats.

5.
Animals (Basel) ; 13(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36899747

RESUMEN

This study aims to investigate the effect of neem leaf supplementation on the feed intake, digestibility, performance, fermentation characteristics, and ruminal microbes in goats. We included 24 Anglo-Nubian Thai native male goats with a body weight of 20 ± 2.0 kg, using 2 × 2 factorial in a completely randomized design for the following four treatments: (1) control, (2) control + 15% PEG in the concentrate, (3) 6% NL in concentrate, and (4) 6% NL + 15% PEG in concentrate. The results show that supplementation with 6% NL + 15% PEG in the concentrate had a higher (p < 0.05) feed intake gDM/d, % BW, g/kgBW0.75, nutrient intake, nutrient digestion, weight change, and ADG than did the goats that were fed with 0% NL + 0% PEG, 0% NL + 15% PEG, and 6% NL + 0% PEG in concentrate, respectively. The feeding with 6% NL + 15% PEG had a higher (p < 0.05) level of propionic acid at 2 and 4 h post feeding compared to the other treatments. Supplementation with 6% NL + 15% PEG in the concentrate had the lowest (p < 0.05) methanogen, protozoa, blood urea nitrogen, ammonia nitrogen, acetic acid, and butyric acid, as well as a lower ratio of acetic acid to propionic acid at 2 and 4 h post feeding than the other treatments. However, supplementation with 6% NL + 15% PEG in concentrate had the highest values of Butyrivibrio fibrisolvens and Streptococcus gallolyticus at 2 and 4 h post feeding compared to the other treatments (p < 0.05). Collectively, this study indicates that neem leaf supplements can increase growth performance and propionic acid and can modulate the abundance of Butyrivibrio fibrisolvens and Streptococcus gallolyticus. Thus, neem leaf could potentially be a good supplement for goat feed.

6.
Animals (Basel) ; 12(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36496814

RESUMEN

Under the background of the current shortage of feed resources, especially the shortage of protein feed, attempts to develop and utilize new feed resources are constantly being made. If the tomato pomace (TP) produced by industrial processing is used improperly, it will not only pollute the environment, but also cause feed resources to be wasted. This review summarizes the nutritional content of TP and its use and impact in animals as an animal feed supplement. Tomato pomace is a by-product of tomato processing, divided into peel, pulp, and tomato seeds, which are rich in proteins, fats, minerals, fatty acids, and amino acids, as well as antioxidant bioactive compounds, such as lycopene, beta-carotenoids, tocopherols, polyphenols, and terpenes. There are mainly two forms of feed: drying and silage. Tomato pomace can improve animal feed intake and growth performance, increase polyunsaturated fatty acids (PUFA) and PUFA n-3 content in meat, improve meat color, nutritional value, and juiciness, enhance immunity and antioxidant capacity of animals, and improve sperm quality. Lowering the rumen pH and reducing CH4 production in ruminants promotes the fermentation of rumen microorganisms and improves economic efficiency. Using tomato pomace instead of soybean meal as a protein supplement is a research hotspot in the animal husbandry industry, and further research should focus on the processing technology of TP and its large-scale application in feed.

7.
Animals (Basel) ; 12(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36359109

RESUMEN

The purpose of this experiment was to investigate the effect of Purple Neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Eighteen Boer male goats (approximately 20 ± 2 kg body weight; mean ± standard deviation (SD)) were randomly allocated into three treatments. All goats were fed a 60 d daily feeding with three treatments: (1) control, (2) 3% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate, and (3) 6% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate. The findings indicate that goat feed containing 6% PNF + 3% SFO in concentrate increased feed consumption, nutrient intake, nutrient apparent digestibility and nitrogen utilization compared to the goat feed at 3% PNF + 3% SFO and the control group. The feeding of goats with 6% PNF + 3% SFO in concentrate resulted in high ammonia nitrogen, BUN, acetic acid, propionic acid, butyric acid, and the total VFA levels were increased at 2 and 4 h after feeding (p < 0.01). The individual microbial population with 6% PNF + 3% SFO had higher (p < 0.01) total bacteria, higher Butyrivibrio fibrisolven, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefacises, and Streptococcus bovis, decreased protozoa and methanogen levels at 2 and 4 h after feeding. The antioxidant in plasma indices varied, with 6% PNF + 3% SFO having higher total antioxidant (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and catalase (CAT) antioxidant activity and lower malondialdehyde (MDA) in plasma at 2 and 4 h after feeding. Additionally, goat fed 6% PNF + 3% SFO can improve meat quality by lowering drip loss, cooking loss, shear force, and saturated fatty acid as well as increase the fatty acid profile (monounsaturated and polyunsaturated fatty acids) in goat meat. Our findings suggest that Purple Neem foliage might be an excellent alternative additive for goat feed.

8.
Insects ; 13(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36135532

RESUMEN

The rapidly growing population has increased demand for protein quantities and, following a shortage of plant-based feed protein sources and the prohibition of animal-based feed protein, has forced the search for new sources of protein. Therefore, humans have turned their attention to edible insects. Black soldier fly larvae (BSFL) (Hermetia illucens L.) are rich in nutrients such as fat, protein and high-quality amino acids and minerals, making them a good source of protein. Furthermore, BSFL are easily reared and propagated on any nutrient substrate such as plant residues, animal manure and waste, food scraps, agricultural byproducts, or straw. Although BSFL cannot completely replace soybean meal in poultry diets, supplementation of less than 20% has no negative impact on chicken growth performance, biochemical indicators and meat quality. In pig studies, although BSFL supplementation did not have any negative effect on growth performance and meat quality, the feed conversion ratio (FCR) was reduced. There is obviously less research on the feeding of BSFL in pigs than in poultry, particularly in relation to weaning piglets and fattening pigs; further research is needed on the supplementation level of sows. Moreover, it has not been found that BSFL are used in ruminants, and the next phase of research could therefore study them. The use of BSFL in animal feed presents some challenges in terms of cost, availability and legal and consumer acceptance. However, this should be considered in the context of the current shortage of protein feed and the nutritional value of BSFL, which has important research significance in animal production.

9.
Animals (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611622

RESUMEN

Purple Napier grass is a semi-dwarf, purple-leaved Napier grass. The purple color is anthocyanins. Anthocyanin is classified as a group of flavonoids. It has antioxidant properties. The objective of this study was to determine the effect of plant spacing and harvesting age on the forage yield, morphological characteristics, chemical composition, and anthocyanin composition of purple Napier grass. An experiment was conducted to determine the effect of plant spacing and harvesting age on the forage yield, morphological characteristics, chemical composition, and anthocyanin composition of purple Napier grass when grown on a sandy soil. The cultivars were Napier Pakchong 1 (Pennisetum purpureum × Pennisetum americanum cv. Pakchong 1) and purple Napier grass (Pennisetum purpureum "Prince"), with plant spacings of 50 × 50, 50 × 75, and 75 × 75 cm, and the harvesting ages were 45, 60, and 75 days. The experiment was a 2 × 3 × 3 factorial layout in a randomized complete block design with four replications, for a total of 72 plots, each 5 × 5 m. The purple Napier grass had a higher number of tillers per plant than the Napier Pakchong 1 grass. The LSR value (leaf/stem ratio) was influenced by the interaction of cultivar × plant spacing × harvesting age. The purple Napier grass planted at 75 × 75 cm for 45 days had the highest LSR value. The crude protein of the purple Napier grass, the grass planted at 75 × 75 cm, and the grass for 45 days were significantly higher than the other treatments. The purple Napier grass planted at 75 × 75 cm for 45 days had the highest (p < 0.05) anthocyanin content. It was concluded that purple Napier grass planted at 75 × 75 cm for 45 days would contain the proper number of tillers per plant, LSR value, chemical composition for ruminants, and the highest anthocyanin composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...