Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Magn Reson Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164832

RESUMEN

PURPOSE: Data for QSM are typically acquired using multi-echo 3D gradient echo (GRE), but EPI can be used to accelerate QSM and provide shorter acquisition times. So far, EPI-QSM has been limited to single-echo acquisitions, which, for 3D GRE, are known to be less accurate than multi-echo sequences. Therefore, we compared single-echo and multi-echo EPI-QSM reconstructions across a range of parallel imaging and multiband acceleration factors. METHODS: Using 2D single-shot EPI in the brain, we compared QSM from single-echo and multi-echo acquisitions across combined parallel-imaging and multiband acceleration factors ranging from 2 to 16, with volume pulse TRs from 21.7 to 3.2 s, respectively. For single-echo versus multi-echo reconstructions, we investigated the effect of acceleration factors on regional susceptibility values, temporal noise, and image quality. We introduce a novel masking method based on thresholding the magnitude of the local field gradients to improve brain masking in challenging regions. RESULTS: At 1.6-mm isotropic resolution, high-quality QSM was achieved using multi-echo 2D EPI with a combined acceleration factor of 16 and a TR of 3.2 s, which enables functional applications. With these high acceleration factors, single-echo reconstructions are inaccurate and artefacted, rendering them unusable. Multi-echo acquisitions greatly improve QSM quality, particularly at higher acceleration factors, provide more consistent regional susceptibility values across acceleration factors, and decrease temporal noise compared with single-echo QSM reconstructions. CONCLUSION: Multi-echo acquisition is more robust for EPI-QSM across parallel imaging and multiband acceleration factors than single-echo acquisition. Multi-echo EPI can be used for highly accelerated acquisition while preserving QSM accuracy and quality relative to gold-standard 3D-GRE QSM.

2.
Eur Radiol Exp ; 8(1): 85, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060637

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) quantification of intramuscular fat accumulation is a responsive biomarker in neuromuscular diseases. Despite emergence of automated methods, manual muscle segmentation remains an essential foundation. We aimed to develop a training programme for new observers to demonstrate competence in lower limb muscle segmentation and establish reliability benchmarks for future human observers and machine learning segmentation packages. METHODS: The learning phase of the training programme comprised a training manual, direct instruction, and eight lower limb MRI scans with reference standard large and small regions of interest (ROIs). The assessment phase used test-retest scans from two patients and two healthy controls. Interscan and interobserver reliability metrics were calculated to identify underperforming outliers and to determine competency benchmarks. RESULTS: Three experienced observers undertook the assessment phase, whilst eight new observers completed the full training programme. Two of the new observers were identified as underperforming outliers, relating to variation in size or consistency of segmentations; six had interscan and interobserver reliability equivalent to those of experienced observers. The calculated benchmark for the Sørensen-Dice similarity coefficient between observers was greater than 0.87 and 0.92 for individual thigh and calf muscles, respectively. Interscan and interobserver reliability were significantly higher for large than small ROIs (all p < 0.001). CONCLUSIONS: We developed, implemented, and analysed the first formal training programme for manual lower limb muscle segmentation. Large ROI showed superior reliability to small ROI for fat fraction assessment. RELEVANCE STATEMENT: Observers competent in lower limb muscle segmentation are critical to application of quantitative muscle MRI biomarkers in neuromuscular diseases. This study has established competency benchmarks for future human observers or automated segmentation methods. KEY POINTS: • Observers competent in muscle segmentation are critical for quantitative muscle MRI biomarkers. • A training programme for muscle segmentation was undertaken by eight new observers. • We established competency benchmarks for future human observers or automated segmentation methods.


Asunto(s)
Extremidad Inferior , Imagen por Resonancia Magnética , Músculo Esquelético , Humanos , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Extremidad Inferior/diagnóstico por imagen , Masculino , Reproducibilidad de los Resultados , Adulto , Femenino , Variaciones Dependientes del Observador , Persona de Mediana Edad
3.
J Peripher Nerv Syst ; 29(3): 368-375, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056278

RESUMEN

BACKGROUND AND AIMS: Histopathological diagnosis is the gold standard in many acquired inflammatory, infiltrative and amyloid based peripheral nerve diseases and a sensory nerve biopsy of sural or superficial peroneal nerve is favoured where a biopsy is deemed necessary. The ability to determine nerve pathology by high-resolution imaging techniques resolving anatomy and imaging characteristics might improve diagnosis and obviate the need for biopsy in some. The sural nerve is anatomically variable and occasionally adjacent vessels can be sent for analysis in error. Knowing the exact position and relationships of the nerve prior to surgery could be clinically useful and thus reliably resolving nerve position has some utility. METHODS: 7T images of eight healthy volunteers' (HV) right ankle were acquired in a pilot study using a double-echo in steady-state sequence for high-resolution anatomy images. Magnetic Transfer Ratio images were acquired of the same area. Systematic scoring of the sural, tibial and deep peroneal nerve around the surgical landmark 7 cm from the lateral malleolus was performed (number of fascicles, area in voxels and mm2, diameter and location relative to nearby vessels and muscles). RESULTS: The sural and tibial nerves were visualised in the high-resolution double-echo in steady-state (DESS) image in all HV. The deep peroneal nerve was not always visualised at level of interest. The MTR values were tightly grouped except in the sural nerve where the nerve was not visualised in two HV. The sural nerve location was found to be variable (e.g., lateral or medial to, or crossing behind, or found positioned directly posterior to the saphenous vein). INTERPRETATION: High-resolution high-field images have excellent visualisation of the sural nerve and would give surgeons prior knowledge of the position before surgery. Basic imaging characteristics of the sural nerve can be acquired, but more detailed imaging characteristics are not easily evaluable in the very small sural and further developments and specific studies are required for any diagnostic utility at 7T.


Asunto(s)
Voluntarios Sanos , Imagen por Resonancia Magnética , Nervio Sural , Humanos , Nervio Sural/anatomía & histología , Nervio Sural/diagnóstico por imagen , Adulto , Masculino , Femenino , Proyectos Piloto , Adulto Joven , Nervio Peroneo/diagnóstico por imagen , Nervio Peroneo/anatomía & histología
4.
Artículo en Inglés | MEDLINE | ID: mdl-37979968

RESUMEN

BACKGROUND: Lower limb muscle magnetic resonance imaging (MRI) obtained fat fraction (FF) can detect disease progression in patients with Charcot-Marie-Tooth disease 1A (CMT1A). However, analysis is time-consuming and requires manual segmentation of lower limb muscles. We aimed to assess the responsiveness, efficiency and accuracy of acquiring FF MRI using an artificial intelligence-enabled automated segmentation technique. METHODS: We recruited 20 CMT1A patients and 7 controls for assessment at baseline and 12 months. The three-point-Dixon fat water separation technique was used to determine thigh-level and calf-level muscle FF at a single slice using regions of interest defined using Musclesense, a trained artificial neural network for lower limb muscle image segmentation. A quality control (QC) check and correction of the automated segmentations was undertaken by a trained observer. RESULTS: The QC check took on average 30 seconds per slice to complete. Using QC checked segmentations, the mean calf-level FF increased significantly in CMT1A patients from baseline over an average follow-up of 12.5 months (1.15%±1.77%, paired t-test p=0.016). Standardised response mean (SRM) in patients was 0.65. Without QC checks, the mean FF change between baseline and follow-up, at 1.15%±1.68% (paired t-test p=0.01), was almost identical to that seen in the corrected data, with a similar overall SRM at 0.69. CONCLUSIONS: Using automated image segmentation for the first time in a longitudinal study in CMT, we have demonstrated that calf FF has similar responsiveness to previously published data, is efficient with minimal time needed for QC checks and is accurate with minimal corrections needed.

5.
Hum Brain Mapp ; 44(15): 5047-5064, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37493334

RESUMEN

Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate ( R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility and R 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. Significant R 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility and R 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and with R 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and with R 2 * in the caudate. Susceptibility and R 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility and R 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Mapeo Encefálico , Lateralidad Funcional/fisiología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodos
6.
Eur Radiol ; 33(11): 8067-8076, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37328641

RESUMEN

OBJECTIVES: Surgical planning of vestibular schwannoma surgery would benefit greatly from a robust method of delineating the facial-vestibulocochlear nerve complex with respect to the tumour. This study aimed to optimise a multi-shell readout-segmented diffusion-weighted imaging (rs-DWI) protocol and develop a novel post-processing pipeline to delineate the facial-vestibulocochlear complex within the skull base region, evaluating its accuracy intraoperatively using neuronavigation and tracked electrophysiological recordings. METHODS: In a prospective study of five healthy volunteers and five patients who underwent vestibular schwannoma surgery, rs-DWI was performed and colour tissue maps (CTM) and probabilistic tractography of the cranial nerves were generated. In patients, the average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD-95) were calculated with reference to the neuroradiologist-approved facial nerve segmentation. The accuracy of patient results was assessed intraoperatively using neuronavigation and tracked electrophysiological recordings. RESULTS: Using CTM alone, the facial-vestibulocochlear complex of healthy volunteer subjects was visualised on 9/10 sides. CTM were generated in all 5 patients with vestibular schwannoma enabling the facial nerve to be accurately identified preoperatively. The mean ASSD between the annotators' two segmentations was 1.11 mm (SD 0.40) and the mean HD-95 was 4.62 mm (SD 1.78). The median distance from the nerve segmentation to a positive stimulation point was 1.21 mm (IQR 0.81-3.27 mm) and 2.03 mm (IQR 0.99-3.84 mm) for the two annotators, respectively. CONCLUSIONS: rs-DWI may be used to acquire dMRI data of the cranial nerves within the posterior fossa. CLINICAL RELEVANCE STATEMENT: Readout-segmented diffusion-weighted imaging and colour tissue mapping provide 1-2 mm spatially accurate imaging of the facial-vestibulocochlear nerve complex, enabling accurate preoperative localisation of the facial nerve. This study evaluated the technique in 5 healthy volunteers and 5 patients with vestibular schwannoma. KEY POINTS: • Readout-segmented diffusion-weighted imaging (rs-DWI) with colour tissue mapping (CTM) visualised the facial-vestibulocochlear nerve complex on 9/10 sides in 5 healthy volunteer subjects. • Using rs-DWI and CTM, the facial nerve was visualised in all 5 patients with vestibular schwannoma and within 1.21-2.03 mm of the nerve's true intraoperative location. • Reproducible results were obtained on different scanners.


Asunto(s)
Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/cirugía , Neuroma Acústico/patología , Estudios Prospectivos , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética , Nervio Facial/diagnóstico por imagen , Nervio Facial/patología , Nervio Vestibulococlear/patología
7.
Magn Reson Med ; 89(5): 1791-1808, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36480002

RESUMEN

PURPOSE: Quantitative susceptibility mapping (QSM) is used increasingly for clinical research where oblique image acquisition is commonplace, but its effects on QSM accuracy are not well understood. THEORY AND METHODS: The QSM processing pipeline involves defining the unit magnetic dipole kernel, which requires knowledge of the direction of the main magnetic field B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ with respect to the acquired image volume axes. The direction of B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ is dependent on the axis and angle of rotation in oblique acquisition. Using both a numerical brain phantom and in vivo acquisitions in 5 healthy volunteers, we analyzed the effects of oblique acquisition on magnetic susceptibility maps. We compared three tilt-correction schemes at each step in the QSM pipeline: phase unwrapping, background field removal and susceptibility calculation, using the RMS error and QSM-tuned structural similarity index. RESULTS: Rotation of wrapped phase images gave severe artifacts. Background field removal with projection onto dipole fields gave the most accurate susceptibilities when the field map was first rotated into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ . Laplacian boundary value and variable-kernel sophisticated harmonic artifact reduction for phase data background field removal methods gave accurate results without tilt correction. For susceptibility calculation, thresholded k-space division, iterative Tikhonov regularization, and weighted linear total variation regularization, all performed most accurately when local field maps were rotated into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ before susceptibility calculation. CONCLUSION: For accurate QSM, oblique acquisition must be taken into account. Rotation of images into alignment with B ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ should be carried out after phase unwrapping and before background-field removal. We provide open-source tilt-correction code to incorporate easily into existing pipelines: https://github.com/o-snow/QSM_TiltCorrection.git.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
8.
Muscle Nerve ; 66(6): 744-749, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36151728

RESUMEN

INTRODUCTION/AIMS: Inclusion body myositis (IBM) is a myopathic condition but in some patients has been associated with an axonal length-dependent polyneuropathy. In this study, we quantified the cross-sectional area of the sciatic and tibial nerves in patients with IBM comparing with Charcot-Marie-Tooth disease type 1A (CMT1A) and healthy controls using magnetic resonance neurography (MRN). METHODS: MRN of the sciatic and tibial nerves was performed at 3T using MPRAGE and Dixon acquisitions. Nerve cross-sectional area (CSA) was measured at the mid-thigh and upper third calf regions by an observer blinded to the diagnosis. Correlations were performed between these measurements and clinical data. RESULTS: A total of 20 patients with IBM, 20 CMT1A and 29 healthy controls (age- and sex-matched) were studied. Sciatic nerve CSA was significantly enlarged in patients with IBM and CMT1A compared to controls (sciatic nerve mean CSA 62.3 ± 22.9 mm2 (IBM) vs. 35.5 ± 9.9 mm2 (controls), p < 0.001; and 96.9 ± 35.5 mm2 (CMT1A) vs. 35.5 ± 9.9 mm2 (controls); p < 0.001). Tibial nerve CSA was also enlarged in IBM and CMT1 patients compared to controls. DISCUSSION: MRN reveals significant hypertrophy of the sciatic and tibial nerves in patients with IBM and CMT1A compared to controls. Further studies are needed to correlate with neurophysiological measures and assess whether this finding is useful diagnostically.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Miositis por Cuerpos de Inclusión , Humanos , Miositis por Cuerpos de Inclusión/complicaciones , Miositis por Cuerpos de Inclusión/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipertrofia/diagnóstico por imagen , Extremidad Inferior/diagnóstico por imagen
9.
Neurology ; 99(9): e865-e876, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36038279

RESUMEN

BACKGROUND AND OBJECTIVES: Limited data suggest that quantitative MRI (qMRI) measures have potential to be used as trial outcome measures in sporadic inclusion body myositis (sIBM) and as a noninvasive assessment tool to study sIBM muscle pathologic processes. Our aim was to evaluate changes in muscle structure and composition using a comprehensive multiparameter set of qMRI measures and to assess construct validity and responsiveness of qMRI measures in people with sIBM. METHODS: This was a prospective observational cohort study with assessments at baseline (n = 30) and 1 year (n = 26). qMRI assessments include thigh muscle volume (TMV), inter/intramuscular adipose tissue (IMAT), muscle fat fraction (FF), muscle inflammation (T2 relaxation time), IMAT from T2* relaxation (T2*-IMAT), intermuscular connective tissue from T2* relaxation (T2*-IMCT), and muscle macromolecular structure from the magnetization transfer ratio (MTR). Physical performance assessments include sIBM Physical Functioning Assessment (sIFA), 6-minute walk distance, and quantitative muscle testing of the quadriceps. Correlations were assessed using the Spearman correlation coefficient. Responsiveness was assessed using the standardized response mean (SRM). RESULTS: After 1 year, we observed a reduction in TMV (6.8%, p < 0.001) and muscle T2 (6.7%, p = 0.035), an increase in IMAT (9.7%, p < 0.001), FF (11.2%, p = 0.030), connective tissue (22%, p = 0.995), and T2*-IMAT (24%, p < 0.001), and alteration in muscle macromolecular structure (ΔMTR = -26%, p = 0.002). A decrease in muscle T2 correlated with an increase in T2*-IMAT (r = -0.47, p = 0.008). Deposition of connective tissue and IMAT correlated with deterioration in sIFA (r = 0.38, p = 0.032; r = 0.34, p = 0.048; respectively), whereas a decrease in TMV correlated with a decrease in quantitative muscle testing (r = 0.36, p = 0.035). The most responsive qMRI measures were T2*-IMAT (SRM = 1.50), TMV (SRM = -1.23), IMAT (SRM = 1.20), MTR (SRM = -0.83), and T2 relaxation time (SRM = -0.65). DISCUSSION: Progressive deterioration in muscle quality measured by qMRI is associated with a decline in physical performance. Inflammation may play a role in triggering fat infiltration into muscle. qMRI provides valid and responsive measures that might prove valuable in sIBM experimental trials and assessment of muscle pathologic processes. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that qMRI outcome measures are associated with physical performance measures in patients with sIBM.


Asunto(s)
Miositis por Cuerpos de Inclusión , Tejido Adiposo/metabolismo , Composición Corporal , Humanos , Inflamación/patología , Imagen por Resonancia Magnética , Músculo Esquelético/patología , Miositis por Cuerpos de Inclusión/diagnóstico por imagen , Miositis por Cuerpos de Inclusión/patología , Estudios Prospectivos
11.
Eur Radiol ; 31(7): 5312-5323, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33452627

RESUMEN

OBJECTIVES: We examined whether providing a quantitative report (QReport) of regional brain volumes improves radiologists' accuracy and confidence in detecting volume loss, and in differentiating Alzheimer's disease (AD) and frontotemporal dementia (FTD), compared with visual assessment alone. METHODS: Our forced-choice multi-rater clinical accuracy study used MRI from 16 AD patients, 14 FTD patients, and 15 healthy controls; age range 52-81. Our QReport was presented to raters with regional grey matter volumes plotted as percentiles against data from a normative population (n = 461). Nine raters with varying radiological experience (3 each: consultants, registrars, 'non-clinical image analysts') assessed each case twice (with and without the QReport). Raters were blinded to clinical and demographic information; they classified scans as 'normal' or 'abnormal' and if 'abnormal' as 'AD' or 'FTD'. RESULTS: The QReport improved sensitivity for detecting volume loss and AD across all raters combined (p = 0.015* and p = 0.002*, respectively). Only the consultant group's accuracy increased significantly when using the QReport (p = 0.02*). Overall, raters' agreement (Cohen's κ) with the 'gold standard' was not significantly affected by the QReport; only the consultant group improved significantly (κs 0.41➔0.55, p = 0.04*). Cronbach's alpha for interrater agreement improved from 0.886 to 0.925, corresponding to an improvement from 'good' to 'excellent'. CONCLUSION: Our QReport referencing single-subject results to normative data alongside visual assessment improved sensitivity, accuracy, and interrater agreement for detecting volume loss. The QReport was most effective in the consultants, suggesting that experience is needed to fully benefit from the additional information provided by quantitative analyses. KEY POINTS: • The use of quantitative report alongside routine visual MRI assessment improves sensitivity and accuracy for detecting volume loss and AD vs visual assessment alone. • Consultant neuroradiologists' assessment accuracy and agreement (kappa scores) significantly improved with the use of quantitative atrophy reports. • First multi-rater radiological clinical evaluation of visual quantitative MRI atrophy report for use as a diagnostic aid in dementia.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Atrofia , Demencia Frontotemporal/diagnóstico por imagen , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad
13.
Eur Radiol ; 31(1): 34-44, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32749588

RESUMEN

OBJECTIVES: Hippocampal sclerosis (HS) is a common cause of temporal lobe epilepsy. Neuroradiological practice relies on visual assessment, but quantification of HS imaging biomarkers-hippocampal volume loss and T2 elevation-could improve detection. We tested whether quantitative measures, contextualised with normative data, improve rater accuracy and confidence. METHODS: Quantitative reports (QReports) were generated for 43 individuals with epilepsy (mean age ± SD 40.0 ± 14.8 years, 22 men; 15 histologically unilateral HS; 5 bilateral; 23 MR-negative). Normative data was generated from 111 healthy individuals (age 40.0 ± 12.8 years, 52 men). Nine raters with different experience (neuroradiologists, trainees, and image analysts) assessed subjects' imaging with and without QReports. Raters assigned imaging normal, right, left, or bilateral HS. Confidence was rated on a 5-point scale. RESULTS: Correct designation (normal/abnormal) was high and showed further trend-level improvement with QReports, from 87.5 to 92.5% (p = 0.07, effect size d = 0.69). Largest magnitude improvement (84.5 to 93.8%) was for image analysts (d = 0.87). For bilateral HS, QReports significantly improved overall accuracy, from 74.4 to 91.1% (p = 0.042, d = 0.7). Agreement with the correct diagnosis (kappa) tended to increase from 0.74 ('fair') to 0.86 ('excellent') with the report (p = 0.06, d = 0.81). Confidence increased when correctly assessing scans with the QReport (p < 0.001, η2p = 0.945). CONCLUSIONS: QReports of HS imaging biomarkers can improve rater accuracy and confidence, particularly in challenging bilateral cases. Improvements were seen across all raters, with large effect sizes, greatest for image analysts. These findings may have positive implications for clinical radiology services and justify further validation in larger groups. KEY POINTS: • Quantification of imaging biomarkers for hippocampal sclerosis-volume loss and raised T2 signal-could improve clinical radiological detection in challenging cases. • Quantitative reports for individual patients, contextualised with normative reference data, improved diagnostic accuracy and confidence in a group of nine raters, in particular for bilateral HS cases. • We present a pre-use clinical validation of an automated imaging assessment tool to assist clinical radiology reporting of hippocampal sclerosis, which improves detection accuracy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Adulto , Epilepsia/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis/diagnóstico por imagen , Esclerosis/patología
14.
Brain Commun ; 2(1): fcaa032, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954290

RESUMEN

Therapeutic trials of disease-modifying agents in neurodegenerative disease typically require several hundred participants and long durations for clinical endpoints. Trials of this size are not feasible for prion diseases, rare dementia disorders associated with misfolding of prion protein. In this situation, biomarkers are particularly helpful. On diagnostic imaging, prion diseases demonstrate characteristic brain signal abnormalities on diffusion-weighted MRI. The aim of this study was to determine whether cerebral water diffusivity could be a quantitative imaging biomarker of disease severity. We hypothesized that the basal ganglia were most likely to demonstrate functionally relevant changes in diffusivity. Seventy-one subjects (37 patients and 34 controls) of whom 47 underwent serial scanning (23 patients and 24 controls) were recruited as part of the UK National Prion Monitoring Cohort. All patients underwent neurological assessment with the Medical Research Council Scale, a functionally orientated measure of prion disease severity, and diffusion tensor imaging. Voxel-based morphometry, voxel-based analysis of diffusion tensor imaging and regions of interest analyses were performed. A significant voxel-wise correlation of decreased Medical Research Council Scale score and decreased mean, radial and axial diffusivities in the putamen bilaterally was observed (P < 0.01). Significant decrease in putamen mean, radial and axial diffusivities over time was observed for patients compared with controls (P = 0.01), and there was a significant correlation between monthly decrease in putamen mean, radial and axial diffusivities and monthly decrease in Medical Research Council Scale (P < 0.001). Step-wise linear regression analysis, with dependent variable decline in Medical Research Council Scale, and covariates age and disease duration, showed the rate of decrease in putamen radial diffusivity to be the strongest predictor of rate of decrease in Medical Research Council Scale (P < 0.001). Sample size calculations estimated that, for an intervention study, 83 randomized patients would be required to provide 80% power to detect a 75% amelioration of decline in putamen radial diffusivity. Putamen radial diffusivity has potential as a secondary outcome measure biomarker in future therapeutic trials in human prion diseases.

15.
Eur J Radiol ; 130: 109164, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32688240

RESUMEN

PURPOSE: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a treatable, immune-mediated condition characterised by progressive or relapsing motor and sensory neurological deficits. The diagnosis is based on a combination of clinical, neurophysiological and supportive criteria, but can be challenging. In this study, we quantified the diameter and cross-sectional area of the lumbosacral nerve roots, and explored the imaging characteristics of the sciatic nerves, in patients with CIDP versus healthy controls using MRI. METHODS: MRI of the lumbosacral plexus and both thighs was performed at 3 T. Orthogonal diameter and cross-sectional area of the lumbosacral nerve roots were measured, along with sciatic nerve cross-sectional area at the mid-thigh level. The MRI appearance of the sciatic nerves was also evaluated qualitatively. All measurements were performed by an observer blinded to the diagnosis. RESULTS: 10 patients with CIDP and 10 healthy controls (age and sex-matched) were studied. Lumbosacral nerve root diameter and cross-sectional area were significantly increased in patients with CIDP compared to controls (mean diameter 6.0 ±â€¯1.1 mm vs 4.8 ±â€¯0.3 mm; p = 0.006), with a high sensitivity (89 %) and specificity (90 %) on ROC analysis. Sciatic nerve cross sectional area was also significantly increased in the CIDP group, and was accompanied by qualitative MRI changes. CONCLUSIONS: Quantitative MRI reveals significant hypertrophy of the lumbosacral nerve roots and sciatic nerves in patients with CIDP compared to controls. This study provides further evidence for the inclusion of lumbosacral nerve root and sciatic nerve hypertrophy on MRI as a supportive feature in the diagnostic criteria for CIDP.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico por imagen , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/patología , Nervio Ciático/diagnóstico por imagen , Nervio Ciático/patología , Adulto , Anciano , Femenino , Humanos , Hipertrofia , Plexo Lumbosacro/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Adulto Joven
16.
Front Neurosci ; 14: 429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477052

RESUMEN

The application of intracranial electroencephalography (icEEG) recording during functional magnetic resonance imaging (icEEG-fMRI) has allowed the study of the hemodynamic correlates of epileptic activity and of the neurophysiological basis of the blood oxygen level-dependent (BOLD) signal. However, the applicability of this technique is affected by data quality issues such as signal drop out in the vicinity of the implanted electrodes. In our center we have limited the technique to a quadrature head transmit and receive RF coil following the results of a safety evaluation. The purpose of this study is to gather further safety-related evidence for performing icEEG-fMRI using a body RF-transmit coil, to allow the greater flexibility afforded by the use of modern, high-density receive arrays, and therefore parallel imaging with benefits such as reduced signal drop-out and distortion artifact. Specifically, we performed a set of empirical temperature measurements on a 1.5T Siemens Avanto MRI scanner with the body RF-transmit coil in a range of electrode and connector cable configurations. The observed RF-induced heating during a high-SAR sequence was maximum in the immediate vicinity of a depth electrode located along the scanner's central axis (range: 0.2-2.4°C) and below 0.5°C at the other electrodes. Also for the high-SAR sequence, we observed excessive RF-related heating in connection cable configurations that deviate from our recommended setup. For the low-SAR sequence, the maximum observed temperature increase across all configurations was 0.3°C. This provides good evidence to allow simultaneous icEEG-fMRI to be performed utilizing the body transmit coil on the 1.5T Siemens Avanto MRI scanner at our center with acceptable additional risk by following a well-defined protocol.

17.
Neuroimage Clin ; 23: 101923, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31491826

RESUMEN

We evaluated whether task-related fMRI (functional magnetic resonance imaging) BOLD (blood oxygenation level dependent) activation could be acquired under conventional anaesthesia at a depth enabling neurosurgery in five patients with supratentorial gliomas. Within a 1.5 T MRI operating room immediately prior to neurosurgery, a passive finger flexion sensorimotor paradigm was performed on each hand with the patients awake, and then immediately after the induction and maintenance of combined sevoflurane and propofol general anaesthesia. The depth of surgical anaesthesia was measured and confirmed with an EEG-derived technique, the Bispectral Index (BIS). The magnitude of the task-related BOLD response and BOLD sensitivity under anaesthesia were determined. The fMRI data were assessed by three fMRI expert observers who rated each activation map for somatotopy and usefulness for radiological neurosurgical guidance. The mean magnitudes of the task-related BOLD response under a BIS measured depth of surgical general anaesthesia were 25% (tumour affected hemisphere) and 22% (tumour free hemisphere) of the respective awake values. BOLD sensitivity under anaesthesia ranged from 7% to 83% compared to the awake state. Despite these reductions, somatotopic BOLD activation was observed in the sensorimotor cortex in all ten data acquisitions surpassing statistical thresholds of at least p < 0.001uncorr. All ten fMRI activation datasets were scored to be useful for radiological neurosurgical guidance. Passive task-related sensorimotor fMRI acquired in neurosurgical patients under multi-pharmacological general anaesthesia is reproducible and yields clinically useful activation maps. These results demonstrate the feasibility of the technique and its potential value if applied intra-operatively. Additionally these methods may enable fMRI investigations in patients unable to perform or lie still for awake paradigms, such as young children, claustrophobic patients and those with movement disorders.


Asunto(s)
Anestesia General , Mapeo Encefálico , Neoplasias Encefálicas/cirugía , Actividad Motora/fisiología , Monitorización Neurofisiológica , Procedimientos Neuroquirúrgicos , Corteza Sensoriomotora/fisiología , Adulto , Electroencefalografía , Estudios de Factibilidad , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Corteza Sensoriomotora/diagnóstico por imagen
18.
Neurology ; 93(9): e895-e907, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31391248

RESUMEN

OBJECTIVE: To investigate the use of muscle MRI for the differential diagnosis and as a disease progression biomarker for 2 major forms of motor neuron disorders: spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS). METHODS: We applied quantitative 3-point Dixon and semiquantitative T1-weighted and short tau inversion recovery (STIR) imaging to bulbar and lower limb muscles and performed clinical and functional assessments in ALS (n = 21) and SBMA (n = 21), alongside healthy controls (n = 16). Acquired images were analyzed for the presence of fat infiltration or edema as well as specific patterns of muscle involvement. Quantitative MRI measurements were correlated with clinical measures of disease severity in ALS and SBMA. RESULTS: Quantitative imaging revealed significant fat infiltration in bulbar (p < 0.001) and limb muscles in SBMA compared to controls (thigh: p < 0.001; calf: p = 0.001), identifying a characteristic pattern of muscle involvement. In ALS, semiquantitative STIR imaging detected marked hyperintensities in lower limb muscles, distinguishing ALS from SBMA and controls. Finally, MRI measurements correlated significantly with clinical scales of disease severity in both ALS and SBMA. CONCLUSIONS: Our findings show that muscle MRI differentiates between SBMA and ALS and correlates with disease severity, supporting its use as a diagnostic tool and biomarker for disease progression. This highlights the clinical utility of muscle MRI in motor neuron disorders and contributes to establish objective outcome measures, which is crucial for the development of new drugs.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Atrofia Muscular Espinal/diagnóstico por imagen , Estudios de Casos y Controles , Estudios Transversales , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Índice de Severidad de la Enfermedad
19.
Ann Clin Transl Neurol ; 6(6): 1033-1045, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31211167

RESUMEN

OBJECTIVE: Limb girdle muscular dystrophy type R9 (LGMD R9) is an autosomal recessive muscle disease for which there is currently no causative treatment. The development of putative therapies requires sensitive outcome measures for clinical trials in this slowly progressing condition. This study extends functional assessments and MRI muscle fat fraction measurements in an LGMD R9 cohort across 6 years. METHODS: Twenty-three participants with LGMD R9, previously assessed over a 1-year period, were re-enrolled at 6 years. Standardized functional assessments were performed including: myometry, timed tests, and spirometry testing. Quantitative MRI was used to measure fat fraction in lower limb skeletal muscle groups. RESULTS: At 6 years, all 14 muscle groups assessed demonstrated significant increases in fat fraction, compared to eight groups in the 1-year follow-up study. In direct contrast to the 1-year follow-up, the 6-min walk test, 10-m walk or run, timed up and go, stair ascend, stair descend and chair rise demonstrated significant decline. Among the functional tests, only FVC significantly declined over both the 1- and 6-year studies. INTERPRETATION: These results further support fat fraction measurements as a primary outcome measure alongside functional assessments. The most appropriate individual muscles are the vastus lateralis, gracilis, sartorius, and gastrocnemii. Using composite groups of lower leg muscles, thigh muscles, or triceps surae, yielded high standardized response means (SRMs). Over 6 years, quantitative fat fraction assessment demonstrated higher SRM values than seen in functional tests suggesting greater responsiveness to disease progression.


Asunto(s)
Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas/fisiopatología , Adulto , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud
20.
J Neurol Neurosurg Psychiatry ; 90(8): 895-906, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30995999

RESUMEN

OBJECTIVES: Hereditary sensory neuropathy type 1 (HSN1) is a rare, slowly progressive neuropathy causing profound sensory deficits and often severe motor loss. L-serine supplementation is a possible candidate therapy but the lack of responsive outcome measures is a barrier for undertaking clinical trials in HSN1. We performed a 12-month natural history study to characterise the phenotype of HSN1 and to identify responsive outcome measures. METHODS: Assessments included Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNSv2), CMTNSv2-Rasch modified, nerve conduction studies, quantitative sensory testing, intraepidermal nerve fibre density (thigh), computerised myometry (lower limbs), plasma 1-deoxysphingolipid levels, calf-level intramuscular fat accumulation by MRI and patient-based questionnaires (Neuropathic Pain Symptom Inventory and 36-Short Form Health Survey version 2 [SF-36v2]). RESULTS: 35 patients with HSN1 were recruited. There was marked heterogeneity in the phenotype mainly due to differences between the sexes: males generally more severely affected. The outcome measures that significantly changed over 1 year and correlated with CMTNSv2, SF-36v2-physical component and disease duration were MRI determined calf intramuscular fat accumulation (mean change in overall calf fat fraction 2.36%, 95% CI 1.16 to 3.55, p=0.0004), pressure pain threshold on the hand (mean change 40 kPa, 95% CI 0.7 to 80, p=0.046) and myometric measurements of ankle plantar flexion (median change -0.5 Nm, IQR -9.5 to 0, p=0.0007), ankle inversion (mean change -0.89 Nm, 95% CI -1.66 to -0.12, p=0.03) and eversion (mean change -1.61 Nm, 95% CI -2.72 to -0.51, p=0.006). Intramuscular calf fat fraction was the most responsive outcome measure. CONCLUSION: MRI determined calf muscle fat fraction shows validity and high responsiveness over 12 months and will be useful in HSN1 clinical trials.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Neuropatías Hereditarias Sensoriales y Autónomas , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Evaluación de Resultado en la Atención de Salud , Valor Predictivo de las Pruebas , Adulto , Progresión de la Enfermedad , Femenino , Neuropatías Hereditarias Sensoriales y Autónomas/diagnóstico por imagen , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Extremidad Inferior/diagnóstico por imagen , Masculino , Fenotipo , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA