Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Article En | MEDLINE | ID: mdl-38509403

Population neuroscience aims to advance our understanding of how genetic and environmental factors influence brain development and brain health over the life span, by integrating genomics, epidemiology, and neuroscience at population scale. This big data approach depends on data sharing strategies at both the micro- and macro-level, as well as attention to effective data management and protection of participant privacy. At the micro-level, researchers participate in international consortia that support collaboration, standards, and data sharing. They also seek to link together cohort studies, administrative health databases, and measures of the physical, built, and social environment in creative ways. Large-scale, longitudinal, and multi-modal cohorts are being designed to support explorations of genetic and environmental impacts on the brain. At a macro-level, funding agency policies now require data across health research domains to be managed according to the FAIR (findable, accessible, interoperable, and re-useable) Data principles and made available to the research community in a timely manner to support reproducibility and re-use. Data repositories provide technical infrastructure for storing, accessing, and increasingly also analyzing rich population-level data. Federated and cloud-based approaches are being leveraged to improve the security, remote accessibility, and performance of repositories. Finally, legal frameworks are being developed to facilitate secure health data access, integration, and analysis, providing new opportunities for the field.

2.
J Law Biosci ; 11(1): lsae001, 2024.
Article En | MEDLINE | ID: mdl-38313429

The General Data Protection Regulation (GDPR) of the European Union, which became applicable in 2018, contains a new accountability principle. Under this principle, controllers (ie parties determining the purposes and the means of the processing of personal data) are responsible for ensuring and demonstrating the overall compliance with the GDPR. However, interpretive uncertainties of the GDPR mean that controllers must exercise considerable judgement in designing and implementing an appropriate compliance strategy, making GDPR compliance both complex and resource-intensive. In this article, we provide conceptual clarity around GDPR compliance with respect to one core aspect of the law: the determination and relevance of the purpose of personal data processing. We derive from the GDPR's text concrete requirements for purpose specification, which we subsequently apply to the area of secondary use of personal data for scientific research. We offer guidance for correctly specifying purposes of data processing under different research scenarios. To illustrate the practical necessity of purpose specification for GDPR compliance, we then show how our proposed approach can enable controllers to meet their compliance obligations, using the example of the overarching GDPR principle of lawfulness to highlight the relevance of purpose specification for the identification of a suitable legal basis.

3.
Gigascience ; 132024 Jan 02.
Article En | MEDLINE | ID: mdl-38217404

Scientific research communities pursue dual imperatives in implementing strategies to share their data. These communities attempt to maximize the accessibility of biomedical data for downstream research use, in furtherance of open science objectives. Simultaneously, such communities safeguard the interests of research participants through data stewardship measures and the integration of suitable risk disclosures to the informed consent process. The Canadian Open Neuroscience Platform (CONP) convened an Ethics and Governance Committee composed of experts in bioethics, neuroethics, and law to develop holistic policy tools, organizational approaches, and technological supports to align the open governance of data with ethical and legal norms. The CONP has adopted novel platform governance methods that favor full data openness, legitimated through the use of robust deidentification processes and informed consent practices. The experience of the CONP is articulated as a potential template for other open science efforts to further build upon. This experience highlights informed consent guidance, deidentification practices, ethicolegal metadata, platform-level norms, and commercialization and publication policies as the principal pillars of a practicable approach to the governance of open data. The governance approach adopted by the CONP stands as a viable model for the broader neuroscience and open science communities to adopt for sharing data in full open access.


Biomedical Research , Humans , Gardens , Canada , Informed Consent , Biological Specimen Banks
5.
J Med Ethics ; 2023 May 25.
Article En | MEDLINE | ID: mdl-37230744

BACKGROUND: Research using data from medical care promises to advance medical science and improve healthcare. Academia is not the only sector that expects such research to be of great benefit. The research-based health industry is also interested in so-called 'real-world' health data to develop new drugs, medical technologies or data-based health applications. While access to medical data is handled very differently in different countries, and some empirical data suggest people are uncomfortable with the idea of companies accessing health information, this paper aims to advance the ethical debate about secondary use of medical data generated in the public healthcare sector by for-profit companies for medical research (ReuseForPro). METHODS: We first clarify some basic concepts and our ethical-normative approach, then discuss and ethically evaluate potential claims and interests of relevant stakeholders: patients as data subjects in the public healthcare system, for-profit companies, the public, and physicians and their healthcare institutions. Finally, we address the tensions between legitimate claims of different stakeholders in order to suggest conditions that might ensure ethically sound ReuseForPro. RESULTS: We conclude that there are good reasons to grant for-profit companies access to medical data if they meet certain conditions: among others they need to respect patients' informational rights and their actions need to be compatible with the public's interest in health benefit from ReuseForPro.

6.
Annu Rev Genomics Hum Genet ; 24: 333-346, 2023 08 25.
Article En | MEDLINE | ID: mdl-36630592

This article reviews evolving legal implications for clinicians and researchers as genomics is used more widely in both the clinic and in translational research, reflecting rapid changes in scientific knowledge as well as the surrounding cultural and political environment. Professionals will face new and changing duties to make or act upon a genetic diagnosis, address direct-to-consumer genetic testing in patient care, consider the health implications of results for patients' family members, and recontact patients when test results change over time. Professional duties in reproductive genetic testing will need to be recalibrated in response to disruptive changes to reproductive rights in the United States. We also review the debate over who controls the flow of genetic information and who is responsible for its protection, considering the globally influential European Union General Data Protection Regulation and the rapidly evolving data privacy law landscape of the United States.


Ambulatory Care Facilities , Direct-To-Consumer Screening and Testing , Humans , European Union , Family , Genomics
8.
Genet Med ; 24(5): 1120-1129, 2022 05.
Article En | MEDLINE | ID: mdl-35125311

PURPOSE: The aim of this study was to determine how attitudes toward the return of genomic research results vary internationally. METHODS: We analyzed the "Your DNA, Your Say" online survey of public perspectives on genomic data sharing including responses from 36,268 individuals across 22 low-, middle-, and high-income countries, and these were gathered in 15 languages. We analyzed how participants responded when asked whether return of results (RoR) would motivate their decision to donate DNA or health data. We examined variation across the study countries and compared the responses of participants from other countries with those from the United States, which has been the subject of the majority of research on return of genomic results to date. RESULTS: There was substantial variation in the extent to which respondents reported being influenced by RoR. However, only respondents from Russia were more influenced than those from the United States, and respondents from 20 countries had lower odds of being partially or wholly influenced than those from the United States. CONCLUSION: There is substantial international variation in the extent to which the RoR may motivate people's intent to donate DNA or health data. The United States may not be a clear indicator of global attitudes. Participants' preferences for return of genomic results globally should be considered.


Attitude , Genomics , DNA , Genomics/methods , Humans , Intention , Surveys and Questionnaires , United States
9.
Cell Genom ; 1(2): None, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34820659

Human biomedical datasets that are critical for research and clinical studies to benefit human health also often contain sensitive or potentially identifying information of individual participants. Thus, care must be taken when they are processed and made available to comply with ethical and regulatory frameworks and informed consent data conditions. To enable and streamline data access for these biomedical datasets, the Global Alliance for Genomics and Health (GA4GH) Data Use and Researcher Identities (DURI) work stream developed and approved the Data Use Ontology (DUO) standard. DUO is a hierarchical vocabulary of human and machine-readable data use terms that consistently and unambiguously represents a dataset's allowable data uses. DUO has been implemented by major international stakeholders such as the Broad and Sanger Institutes and is currently used in annotation of over 200,000 datasets worldwide. Using DUO in data management and access facilitates researchers' discovery and access of relevant datasets. DUO annotations increase the FAIRness of datasets and support data linkages using common data use profiles when integrating the data for secondary analyses. DUO is implemented in the Web Ontology Language (OWL) and, to increase community awareness and engagement, hosted in an open, centralized GitHub repository. DUO, together with the GA4GH Passport standard, offers a new, efficient, and streamlined data authorization and access framework that has enabled increased sharing of biomedical datasets worldwide.

11.
Genome Med ; 13(1): 92, 2021 05 25.
Article En | MEDLINE | ID: mdl-34034801

BACKGROUND: Public trust is central to the collection of genomic and health data and the sustainability of genomic research. To merit trust, those involved in collecting and sharing data need to demonstrate they are trustworthy. However, it is unclear what measures are most likely to demonstrate this. METHODS: We analyse the 'Your DNA, Your Say' online survey of public perspectives on genomic data sharing including responses from 36,268 individuals across 22 low-, middle- and high-income countries, gathered in 15 languages. We examine how participants perceived the relative value of measures to demonstrate the trustworthiness of those using donated DNA and/or medical information. We examine between-country variation and present a consolidated ranking of measures. RESULTS: Providing transparent information about who will benefit from data access was the most important measure to increase trust, endorsed by more than 50% of participants across 20 of 22 countries. It was followed by the option to withdraw data and transparency about who is using data and why. Variation was found for the importance of measures, notably information about sanctions for misuse of data-endorsed by 5% in India but almost 60% in Japan. A clustering analysis suggests alignment between some countries in the assessment of specific measures, such as the UK and Canada, Spain and Mexico and Portugal and Brazil. China and Russia are less closely aligned with other countries in terms of the value of the measures presented. CONCLUSIONS: Our findings highlight the importance of transparency about data use and about the goals and potential benefits associated with data sharing, including to whom such benefits accrue. They show that members of the public value knowing what benefits accrue from the use of data. The study highlights the importance of locally sensitive measures to increase trust as genomic data sharing continues globally.


Genomics , Information Dissemination , Trust , Genomics/methods , Genomics/standards , Humans , Online Systems , Research , Surveys and Questionnaires
12.
Front Genet ; 12: 535340, 2021.
Article En | MEDLINE | ID: mdl-33868358

Children with rare and common diseases now undergo whole genome sequencing (WGS) in clinical and research contexts. Parents sometimes request access to their child's raw genomic data, to pursue their own analyses or for onward sharing with health professionals and researchers. These requests raise legal, ethical, and practical issues for professionals and parents alike. The advent of widespread WGS in pediatrics occurs in a context where privacy and data protection law remains focused on giving individuals control-oriented rights with respect to their personal information. Acting in their child's stead and in their best interests, parents are generally the ones who will be exercising these informational rights on behalf of the child. In this paper, we map the contours of parental authority to access their child's raw genomic data. We consider three use cases: hospital-based researchers, healthcare professionals acting in a clinical-diagnostic capacity, and "pure" academic researchers at a public institution. Our research seeks to answer two principal questions: Do parents have a right of access to their child's raw WGS data? If so, what are the limits of this right? Primarily focused on the laws of Ontario, Canada's most populous province, with a secondary focus on Canada's three other most populous provinces (Quebec, British Columbia, and Alberta) and the European Union, our principal findings include (1) parents have a general right of access to information about their children, but that the access right is more capacious in the clinical context than in the research context; (2) the right of access extends to personal data in raw form; (3) a consideration of the best interests of the child may materially limit the legal rights of parents to access data about their child; (4) the ability to exercise rights of access are transferred from parents to children when they gain decision-making capacity in both the clinical and research contexts, but with more nuance in the former. With these findings in mind, we argue that professional guidelines, which are concerned with obligations to interpret and return results, may assist in furthering a child's best interests in the context of legal access rights. We conclude by crafting recommendations for healthcare professionals in the clinical and research contexts when faced with a parental request for a child's raw genomic data.

14.
Cell Genom ; 1(2)2021 Nov 10.
Article En | MEDLINE | ID: mdl-35128509

We promote a shared vision and guide for how and when to federate genomic and health-related data sharing, enabling connections and insights across independent, secure databases. The GA4GH encourages a federated approach wherein data providers have the mandate and resources to share, but where data cannot move for legal or technical reasons. We recommend a federated approach to connect national genomics initiatives into a global network and precision medicine resource.

15.
J Law Biosci ; 7(1): lsaa065, 2020.
Article En | MEDLINE | ID: mdl-33005429

A popular model for global scientific repositories is the data commons, which pools or connects many datasets alongside supporting infrastructure. A data commons must establish legally interoperability between datasets to ensure researchers can aggregate and reuse them. This is usually achieved by establishing a shared governance structure. Unfortunately, governance often takes years to negotiate and involves a trade-off between data inclusion and data availability. It can also be difficult for repositories to modify governance structures in response to changing scientific priorities, data sharing practices, or legal frameworks. This problem has been laid bare by the sudden shock of the COVID-19 pandemic. This paper proposes a rapid and flexible strategy for scientific repositories to achieve legal interoperability: the policy-aware data lake. This strategy draws on technical concepts of modularity, metadata, and data lakes. Datasets are treated as independent modules, which can be subject to distinctive legal requirements. Each module must, however, be described using standard legal metadata. This allows legally compatible datasets to be rapidly combined and made available on a just-in-time basis to certain researchers for certain purposes. Global scientific repositories increasingly need such flexibility to manage scientific, organizational, and legal complexity, and to improve their responsiveness to global pandemics.

16.
Am J Hum Genet ; 107(4): 743-752, 2020 10 01.
Article En | MEDLINE | ID: mdl-32946764

Analyzing genomic data across populations is central to understanding the role of genetic factors in health and disease. Successful data sharing relies on public support, which requires attention to whether people around the world are willing to donate their data that are then subsequently shared with others for research. However, studies of such public perceptions are geographically limited and do not enable comparison. This paper presents results from a very large public survey on attitudes toward genomic data sharing. Data from 36,268 individuals across 22 countries (gathered in 15 languages) are presented. In general, publics across the world do not appear to be aware of, nor familiar with, the concepts of DNA, genetics, and genomics. Willingness to donate one's DNA and health data for research is relatively low, and trust in the process of data's being shared with multiple users (e.g., doctors, researchers, governments) is also low. Participants were most willing to donate DNA or health information for research when the recipient was specified as a medical doctor and least willing to donate when the recipient was a for-profit researcher. Those who were familiar with genetics and who were trusting of the users asking for data were more likely to be willing to donate. However, less than half of participants trusted more than one potential user of data, although this varied across countries. Genetic information was not uniformly seen as different from other forms of health information, but there was an association between seeing genetic information as special in some way compared to other health data and increased willingness to donate. The global perspective provided by our "Your DNA, Your Say" study is valuable for informing the development of international policy and practice for sharing genomic data. It highlights that the research community not only needs to be worthy of trust by the public, but also urgent steps need to be taken to authentically communicate why genomic research is necessary and how data donation, and subsequent sharing, is integral to this.


Genome, Human , Genomics/ethics , Information Dissemination/ethics , Sequence Analysis, DNA/ethics , Trust/psychology , Adult , Americas , Asia , Australia , Europe , Female , Health Knowledge, Attitudes, Practice , High-Throughput Nucleotide Sequencing , Humans , Male , Public Health/ethics , Surveys and Questionnaires
17.
J Med Internet Res ; 22(8): e19799, 2020 08 27.
Article En | MEDLINE | ID: mdl-32784191

Researchers must collaborate globally to rapidly respond to the COVID-19 pandemic. In Europe, the General Data Protection Regulation (GDPR) regulates the processing of personal data, including health data of value to researchers. Even during a pandemic, research still requires a legal basis for the processing of sensitive data, additional justification for its processing, and a basis for any transfer of data outside Europe. The GDPR does provide legal grounds and derogations that can support research addressing a pandemic, if the data processing activities are proportionate to the aim pursued and accompanied by suitable safeguards. During a pandemic, a public interest basis may be more promising for research than a consent basis, given the high standards set out in the GDPR. However, the GDPR leaves many aspects of the public interest basis to be determined by individual Member States, which have not fully or uniformly made use of all options. The consequence is an inconsistent legal patchwork that displays insufficient clarity and impedes joint approaches. The COVID-19 experience provides lessons for national legislatures. Responsiveness to pandemics requires clear and harmonized laws that consider the related practical challenges and support collaborative global research in the public interest.


Betacoronavirus/pathogenicity , Computer Security/standards , Coronavirus Infections/epidemiology , Informatics/methods , Pneumonia, Viral/epidemiology , COVID-19 , Europe , Humans , Pandemics , SARS-CoV-2
18.
J Med Internet Res ; 22(7): e18087, 2020 07 28.
Article En | MEDLINE | ID: mdl-32540846

Developing or independently evaluating algorithms in biomedical research is difficult because of restrictions on access to clinical data. Access is restricted because of privacy concerns, the proprietary treatment of data by institutions (fueled in part by the cost of data hosting, curation, and distribution), concerns over misuse, and the complexities of applicable regulatory frameworks. The use of cloud technology and services can address many of the barriers to data sharing. For example, researchers can access data in high performance, secure, and auditable cloud computing environments without the need for copying or downloading. An alternative path to accessing data sets requiring additional protection is the model-to-data approach. In model-to-data, researchers submit algorithms to run on secure data sets that remain hidden. Model-to-data is designed to enhance security and local control while enabling communities of researchers to generate new knowledge from sequestered data. Model-to-data has not yet been widely implemented, but pilots have demonstrated its utility when technical or legal constraints preclude other methods of sharing. We argue that model-to-data can make a valuable addition to our data sharing arsenal, with 2 caveats. First, model-to-data should only be adopted where necessary to supplement rather than replace existing data-sharing approaches given that it requires significant resource commitments from data stewards and limits scientific freedom, reproducibility, and scalability. Second, although model-to-data reduces concerns over data privacy and loss of local control when sharing clinical data, it is not an ethical panacea. Data stewards will remain hesitant to adopt model-to-data approaches without guidance on how to do so responsibly. To address this gap, we explored how commitments to open science, reproducibility, security, respect for data subjects, and research ethics oversight must be re-evaluated in a model-to-data context.


Biomedical Research/methods , Cloud Computing/standards , Information Dissemination/methods , Humans , Reproducibility of Results
19.
Front Genet ; 11: 303, 2020.
Article En | MEDLINE | ID: mdl-32435258

Whole genome/exome sequencing (WGS/WES) has become widely adopted in research and, more recently, in clinical settings. Many hope that the information obtained from the interpretation of these data will have medical benefits for patients and-in some cases-also their biological relatives. Because of the manifold possibilities to reuse genomic data, enabling sequenced individuals to access their own raw (uninterpreted) genomic data is a highly debated issue. This paper reports some of the first empirical findings on personal genome access policies and practices. We interviewed 39 respondents, working at 33 institutions in 21 countries across Europe. These sequencing institutions generate massive amounts of WGS/WES data and represent varying organisational structures and operational models. Taken together, in total, these institutions have sequenced ∼317,259 genomes and exomes to date. Most of the sequencing institutions reported that they are able to store raw genomic data in compliance with various national regulations, although there was a lack of standardisation of storage formats. Interviewees from 12 of the 33 institutions included in our study reported that they had received requests for personal access to raw genomic data from sequenced individuals. In the absence of policies on how to process such requests, these were decided on an ad hoc basis; in the end, at least 28 requests were granted, while there were no reports of requests being rejected. Given the rights, interests, and liabilities at stake, it is essential that sequencing institutions adopt clear policies and processes for raw genomic data retention and personal access.

...