Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenetics ; 19(1): 2374979, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38970823

RESUMEN

TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.


Asunto(s)
5-Metilcitosina , Corteza Cerebral , Metilación de ADN , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Corteza Cerebral/metabolismo , Ratones Noqueados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Islas de CpG , Mutación
2.
Elife ; 112022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36441651

RESUMEN

Dysregulation of the imprinted H19/IGF2 locus can lead to Silver-Russell syndrome (SRS) in humans. However, the mechanism of how abnormal H19/IGF2 expression contributes to various SRS phenotypes remains unclear, largely due to incomplete understanding of the developmental functions of these two genes. We previously generated a mouse model with humanized H19/IGF2 imprinting control region (hIC1) on the paternal allele that exhibited H19/Igf2 dysregulation together with SRS-like growth restriction and perinatal lethality. Here, we dissect the role of H19 and Igf2 in cardiac and placental development utilizing multiple mouse models with varying levels of H19 and Igf2. We report severe cardiac defects such as ventricular septal defects and thinned myocardium, placental anomalies including thrombosis and vascular malformations, together with growth restriction in mouse embryos that correlated with the extent of H19/Igf2 dysregulation. Transcriptomic analysis using cardiac endothelial cells of these mouse models shows that H19/Igf2 dysregulation disrupts pathways related to extracellular matrix and proliferation of endothelial cells. Our work links the heart and placenta through regulation by H19 and Igf2, demonstrating that accurate dosage of both H19 and Igf2 is critical for normal embryonic development, especially related to the cardiac-placental axis.


Asunto(s)
Síndrome de Silver-Russell , Animales , Femenino , Ratones , Embarazo , Modelos Animales de Enfermedad , Células Endoteliales , Factor II del Crecimiento Similar a la Insulina/genética , Placenta , Placentación , Síndrome de Silver-Russell/genética , Histonas/metabolismo
3.
Mol Cell ; 82(19): 3613-3631.e7, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36108632

RESUMEN

Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.


Asunto(s)
Impresión Genómica , ARN Largo no Codificante , Alelos , Animales , Cromatina/genética , Metilación de ADN , Proteína Adaptadora GRB10/genética , Corazón , Ratones
4.
Dev Cell ; 56(22): 3035-3037, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34813763

RESUMEN

Loss of imprinting (LOI) at the Dlk1-Dio3 locus is linked to Kagami-Ogata and Temple syndromes, and to cancer, but molecular mechanisms that prevent LOI are under-studied. In this issue of Developmental Cell, Aronson et al. demarcate the bipartite regulation of the Dlk1-Dio3 imprinting control region (ICR) IG-DMR, which maintains locus imprinting.


Asunto(s)
Impresión Genómica , Neoplasias , Proteínas de Unión al Calcio/genética , Metilación de ADN , Humanos , Proteínas de la Membrana/genética
5.
Epigenetics ; 16(12): 1295-1305, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33300436

RESUMEN

Genomic imprinting is a rare form of gene expression in mammals in which a small number of genes are expressed in a parent-of-origin-specific manner. The aetiology of human imprinting disorders is diverse and includes chromosomal abnormalities, mutations, and epigenetic dysregulation of imprinted genes. The most common human imprinting disorder is Beckwith-Wiedemann syndrome (BWS), frequently caused by uniparental isodisomy and DNA methylation alterations. Because these lesions cannot be easily engineered, induced pluripotent stem cells (iPSC) are a compelling alternative. Here, we describe the first iPSC model derived from patients with BWS. Due to the mosaic nature of BWS patients, both BWS and non-BWS iPSC lines were derived from the same patient's fibroblasts. Importantly, we determine that DNA methylation and gene expression patterns of the imprinted region in the iPSC lines reflect the parental cells and are stable over time. Additionally, we demonstrate that differential expression in insulin signalling, cell proliferation, and cell cycle pathways was seen in hepatocyte lineages derived from BWS lines compared to controls. Thus, this cell based-model can be used to investigate the role of imprinting in the pathogenesis of BWS in disease-relevant cell types.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Impresión Genómica , Humanos , Mutación
6.
Physiol Rep ; 7(19): e14244, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609547

RESUMEN

Epigenetic dysregulation of long noncoding RNA H19 was recently found to be associated with calcific aortic valve disease (CAVD) in humans by repressing NOTCH1 transcription. This finding offers a possible epigenetic explanation for the abundance of cases of CAVD that are not explained by any clear genetic mutation. In this study, we examined the effect of age and sex on epigenetic dysregulation of H19 and subsequent aortic stenosis. Cohorts of littermate, wild-type C57BL/6 mice were studied at developmental ages analogous to human middle age through advanced age. Cardiac and aortic valve function were assessed with M-mode echocardiography and pulsed wave Doppler ultrasound, respectively. Bisulfite sequencing was used to determine methylation-based epigenetic regulation of H19, and RT-PCR was used to determine changes in gene expression profiles. Male mice were found to have higher peak systolic velocities than females, with several of the oldest mice showing signs of early aortic stenosis. The imprinting control region of H19 was not hypomethylated with age, and H19 expression was lower in the aortic valves of older mice than in the youngest group. These results suggest that age-related upregulation of H19 is not observed in murine aortic valves and that other factors may initiate H19-related CAVD in humans.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/patología , Calcinosis/genética , Metilación de ADN/genética , ARN Largo no Codificante/genética , Envejecimiento , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/metabolismo , Factores Sexuales , Regulación hacia Arriba
7.
PLoS Genet ; 14(2): e1007243, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470501

RESUMEN

Differential DNA methylation defects of H19/IGF2 are associated with congenital growth disorders characterized by opposite clinical pictures. Due to structural differences between human and mouse, the mechanisms by which mutations of the H19/IGF2 Imprinting Control region (IC1) result in these diseases are undefined. To address this issue, we previously generated a mouse line carrying a humanized IC1 (hIC1) and now replaced the wildtype with a mutant IC1 identified in the overgrowth-associated Beckwith-Wiedemann syndrome. The new humanized mouse line shows pre/post-natal overgrowth on maternal transmission and pre/post-natal undergrowth on paternal transmission of the mutation. The mutant hIC1 acquires abnormal methylation during development causing opposite H19/Igf2 imprinting defects on maternal and paternal chromosomes. Differential and possibly mosaic Igf2 expression and imprinting is associated with asymmetric growth of bilateral organs. Furthermore, tissue-specific imprinting defects result in deficient liver- and placenta-derived Igf2 on paternal transmission and excessive Igf2 in peripheral tissues on maternal transmission, providing a possible molecular explanation for imprinting-associated and phenotypically contrasting growth disorders.


Asunto(s)
Impresión Genómica/genética , Trastornos del Crecimiento/congénito , Trastornos del Crecimiento/genética , Mosaicismo , Animales , Células Cultivadas , Femenino , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Embrionarias de Ratones , Mutación , Especificidad de Órganos/genética , Fenotipo , Embarazo , ARN Largo no Codificante/genética
8.
Proc Natl Acad Sci U S A ; 113(39): 10938-43, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621468

RESUMEN

Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS.


Asunto(s)
Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , ARN Largo no Codificante/genética , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/patología , Alelos , Animales , Metilación de ADN/genética , Embrión de Mamíferos/metabolismo , Femenino , Marcación de Gen , Sitios Genéticos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenotipo , Espermatogénesis/genética , Espermatozoides/metabolismo
9.
Hum Mol Genet ; 23(23): 6246-59, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24990148

RESUMEN

Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.


Asunto(s)
Secuencia de Bases , Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Eliminación de Secuencia , Animales , Factor de Unión a CCCTC , Metilación de ADN , Epigénesis Genética , Humanos , Elementos Aisladores , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Mutación , Especificidad de Órganos , Proteínas Represoras/metabolismo
10.
Nature ; 500(7462): 345-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863936

RESUMEN

The epigenetic regulation of imprinted genes by monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells; however, a role for imprinting per se in adult stem cells remains elusive. Here we show upregulation of growth-restricting imprinted genes, including in the H19-Igf2 locus, in long-term haematopoietic stem cells and their downregulation upon haematopoietic stem cell activation and proliferation. A differentially methylated region upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele. In addition, H19 serves as a source of miR-675, which restricts Igf1r expression. We demonstrate that conditional deletion of the maternal but not the paternal H19-DMR reduces adult haematopoietic stem cell quiescence, a state required for long-term maintenance of haematopoietic stem cells, and compromises haematopoietic stem cell function. Maternal-specific H19-DMR deletion results in activation of the Igf2-Igfr1 pathway, as shown by the translocation of phosphorylated FoxO3 (an inactive form) from nucleus to cytoplasm and the release of FoxO3-mediated cell cycle arrest, thus leading to increased activation, proliferation and eventual exhaustion of haematopoietic stem cells. Mechanistically, maternal-specific H19-DMR deletion leads to Igf2 upregulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partly rescues the H19-DMR deletion phenotype. Our work establishes a new role for this unique form of epigenetic control at the H19-Igf2 locus in maintaining adult stem cells.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Receptor IGF Tipo 1/genética , Transducción de Señal , Activación Transcripcional
11.
Genetics ; 192(3): 1095-107, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22887817

RESUMEN

During the development of female mammals, one of the two X chromosomes is inactivated, serving as a dosage-compensation mechanism to equalize the expression of X-linked genes in females and males. While the choice of which X chromosome to inactivate is normally random, X chromosome inactivation can be skewed in F1 hybrid mice, as determined by alleles at the X chromosome controlling element (Xce), a locus defined genetically by Cattanach over 40 years ago. Four Xce alleles have been defined in inbred mice in order of the tendency of the X chromosome to remain active: Xce(a) < Xce(b) < Xce(c) < Xce(d). While the identity of the Xce locus remains unknown, previous efforts to map sequences responsible for the Xce effect in hybrid mice have localized the Xce to candidate regions that overlap the X chromosome inactivation center (Xic), which includes the Xist and Tsix genes. Here, we have intercrossed 129S1/SvImJ, which carries the Xce(a) allele, and Mus musculus castaneus EiJ, which carries the Xce(c) allele, to generate recombinant lines with single or double recombinant breakpoints near or within the Xce candidate region. In female progeny of 129S1/SvImJ females mated to recombinant males, we have measured the X chromosome inactivation ratio using allele-specific expression assays of genes on the X chromosome. We have identified regions, both proximal and distal to Xist/Tsix, that contribute to the choice of which X chromosome to inactivate, indicating that multiple elements on the X chromosome contribute to the Xce.


Asunto(s)
Inactivación del Cromosoma X , Cromosoma X , Alelos , Animales , Cruzamiento , Femenino , Genes Ligados a X , Masculino , Ratones , Sitios de Carácter Cuantitativo
12.
Cell ; 146(1): 11-3, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729777

RESUMEN

Xist RNA inactivates one mammalian X chromosome (the Xi) by associating with it in cis. The mechanism of this interaction is unresolved. Jeon and Lee (2011) now show that YY1 binds both Xist RNA and DNA, thereby providing a mechanism to anchor Xist to the Xi and facilitate X chromosome inactivation.

13.
Dev Biol ; 355(2): 349-57, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21600199

RESUMEN

Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Impresión Genómica/fisiología , ARN no Traducido/metabolismo , Elementos Reguladores de la Transcripción/fisiología , Proteínas Represoras/metabolismo , Animales , Southern Blotting , Factor de Unión a CCCTC , Cruzamientos Genéticos , Metilación de ADN/genética , Cartilla de ADN/genética , Electroporación , Vectores Genéticos/genética , Impresión Genómica/genética , Patrón de Herencia/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , ARN Largo no Codificante , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia/genética
14.
Hum Mol Genet ; 17(19): 3021-9, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18617529

RESUMEN

Insight into how the mammalian genome is structured in vivo is key to understanding transcriptional regulation. This is especially true in complex domains in which genes are coordinately regulated by long-range interactions between cis-regulatory elements. The regulation of the H19/Igf2 imprinted region depends on the presence of several cis-acting sequences, including a methylation-sensitive insulator between Igf2 and H19 and shared enhancers downstream of H19. Each parental allele has a distinct expression pattern. We used chromosome conformation capture to assay the native three-dimensional organization of the H19/Igf2 locus on each parental copy. Furthermore, we compared wild-type chromosomes to several mutations that affect the insulator. Our results show that promoters and enhancers reproducibly co-localize at transcriptionally active genes, i.e. the endodermal enhancers contact the maternal H19 and the paternal Igf2 genes. The active insulator blocks traffic of the enhancers along the chromosome, restricting them to the H19 promoter. Conversely, the methylated inactive insulator allows the enhancers to contact the upstream regions, including Igf2. Mutations that either remove or inhibit insulator activity allow unrestricted access of the enhancers to the whole region. A mutation that allows establishment of an enhancer-blocker on the normally inactive paternal copy diminishes the contact of the enhancer with the Igf2 gene. Based on our results, we propose that physical proximity of cis-acting DNA elements is vital for their activity in vivo. We suggest that enhancers track along the chromosome until they find a suitable promoter sequence to interact with and that insulator elements block further tracking of enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Modelos Genéticos , ARN no Traducido/genética , Animales , Sitios de Unión , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Metilación de ADN , Regulación de la Expresión Génica , Elementos Aisladores , Ratones , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Largo no Codificante , ARN no Traducido/química
15.
Mol Cell Biol ; 28(1): 71-82, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17967893

RESUMEN

Genomic imprinting governs allele-specific gene expression in an epigenetically heritable manner. The characterization of histone modifications at imprinted gene loci is incomplete, and whether specific histone marks determine transcription or are dependent on it is not understood. Using chromatin immunoprecipitations, we examined in multiple cell types and in an allele-specific manner the active and repressive histone marks of several imprinted loci, including H19, KvDMR1, Snrpn promoter/exon 1, and IG-DMR imprinting control regions. Expressed alleles are enriched for specific actively modified histones, including H3 di- and trimethylated at Lys4 and acetylated histones H3 and H4, while their silent counterparts are associated with repressive marks such as H3 trimethylated at Lys9 alone or in combination with H3 trimethylated at Lys27 and H4/H2A symmetrically dimethylated at Arg3. At H19, allele-specific histone modifications occur throughout the entire locus, including nontranscribed regions such as the differentially methylated domain (DMD) as well as sequences in the H19 gene body that are not differentially methylated. Significantly, the presence of active marks at H19 depends on transcriptional activity and occurs even in the absence of the DMD. These findings suggest that histone modifications are dependent on the transcriptional status of imprinted alleles and illuminate epigenetic mechanisms of genomic imprinting.


Asunto(s)
Alelos , Impresión Genómica/genética , Histonas/metabolismo , ARN no Traducido/genética , Transcripción Genética/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Cromatina/genética , Metilación de ADN , Eliminación de Gen , Regulación de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Ratones , ARN Largo no Codificante
17.
Dev Biol ; 298(2): 344-53, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16916508

RESUMEN

X chromosome inactivation (XCI) is the phenomenon through which one of the two X chromosomes in female mammals is silenced to achieve dosage compensation with males. XCI is a highly complex, tightly controlled and developmentally regulated process. The mouse undergoes two forms of XCI: imprinted, which occurs in all cells of the preimplantation embryo and in the extraembryonic lineage, and random, which occurs in somatic cells after implantation. This review presents results and hypotheses that have recently been proposed concerning important aspects of both imprinted and random XCI in mice. We focus on how imprinted XCI occurs during preimplantation development, including a brief discussion of the debate as to when silencing initiates. We also discuss regulation of random XCI, focusing on the requirement for Tsix antisense transcription through the Xist locus, on the regulation of Xist chromatin structure by Tsix and on the effect of Tsix regulatory elements on choice and counting. Finally, we review exciting new data revealing that X chromosomes co-localize during random XCI. To conclude, we highlight other aspects of X-linked gene regulation that make it a suitable model for epigenetics at work.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Inactivación del Cromosoma X , Cromosoma X , Animales , Blastocisto/fisiología , Epigénesis Genética , Femenino , Silenciador del Gen , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , ARN Largo no Codificante , ARN no Traducido/genética , Células Madre/fisiología , Transcripción Genética
18.
Hum Mol Genet ; 15(19): 2945-54, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16928784

RESUMEN

Imprinting at the H19/Igf2 locus depends on a differentially methylated domain (DMD) acting as a maternal-specific, methylation-sensitive insulator and a paternal-specific locus of hypermethylation. Four repeats in the DMD bind CTCF on the maternal allele and have been proposed to recruit methylation on the paternal allele. We deleted the four repeats and assayed the effects of the mutation at the endogenous locus. The H19DMD-DeltaR allele can successfully acquire methylation during spermatogenesis and silence paternal H19, indicating that these paternal-specific functions are independent of the CTCF binding sites. Maternal inheritance of the mutations leads to biallelic Igf2 expression, consistent with the loss of a functional insulator. Additionally, we uncovered two previously undescribed roles for the CTCF binding sites. On the mutant allele, H19 RNA is barely detectable in 6.5 d.p.c. embryos and 9.5 d.p.c. placenta, for the first time identifying the repeats as the elements responsible for initiating H19 transcription. Furthermore, methylation is abruptly acquired on the mutant maternal allele after implantation, a time when the embryo is undergoing genome-wide de novo methylation. Together, these experiments show that in addition to being essential for a functional insulator, the CTCF repeats facilitate initiation of H19 expression in the early embryo and are required to maintain the hypomethylated state of the entire DMD.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , ARN no Traducido/genética , Proteínas Represoras/metabolismo , Alelos , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , ADN/genética , ADN/metabolismo , Metilación de ADN , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones , Ratones Mutantes , Modelos Biológicos , Embarazo , ARN Largo no Codificante , Transcripción Genética
19.
Mol Cell Biol ; 26(4): 1245-58, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449639

RESUMEN

The differentially methylated domain (DMD) of the mouse H19 gene is a methylation-sensitive insulator that blocks access of the Igf2 gene to shared enhancers on the maternal allele and inactivates H19 expression on the methylated paternal allele. By analyzing H19 DMD deletion alleles H19DeltaDMD and H19Delta3.8kb-5'H19 in pre- and postimplantation embryos, we show that the DMD exhibits positive transcriptional activity and is required for H19 expression in blastocysts and full activation of H19 during subsequent development. We also show that the DMD is required to establish Igf2 imprinting by blocking access to shared enhancers when Igf2 monoallelic expression is initiated in postimplantation embryos and that the single remaining CTCF site of the H19DeltaDMD allele is unable to provide this function. Furthermore, our data demonstrate that sequence outside of the DMD can attract some paternal-allele-specific CpG methylation 5' of H19 in preimplantation embryos, although this methylation is not maintained during postimplantation in the absence of the DMD. Finally, we report a conditional allele floxing the 1.6-kb sequence deleted from the H19DeltaDMD allele and demonstrate that the DMD is required to maintain repression of the maternal Igf2 allele and the full activity of the paternal Igf2 allele in neonatal liver.


Asunto(s)
Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , ARN no Traducido/genética , Alelos , Animales , Animales Recién Nacidos , Secuencia de Bases , Blastocisto/metabolismo , ADN/genética , Metilación de ADN , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , ARN Largo no Codificante , Eliminación de Secuencia
20.
Genetics ; 164(4): 1481-94, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12930754

RESUMEN

The mammalian epigenetic phenomena of X inactivation and genomic imprinting are incompletely understood. X inactivation equalizes X-linked expression between males and females by silencing genes on one X chromosome during female embryogenesis. Genomic imprinting functionally distinguishes the parental genomes, resulting in parent-specific monoallelic expression of particular genes. N-ethyl-N-nitrosourea (ENU) mutagenesis was used in the mouse to screen for mutations in novel factors involved in X inactivation. Previously, we reported mutant pedigrees identified through this screen that segregate aberrant X-inactivation phenotypes and we mapped the mutation in one pedigree to chromosome 15. We now have mapped two additional mutations to the distal chromosome 5 and the proximal chromosome 10 in a second pedigree and show that each of the mutations is sufficient to induce the mutant phenotype. We further show that the roles of these factors are specific to embryonic X inactivation as neither genomic imprinting of multiple genes nor imprinted X inactivation is perturbed. Finally, we used mice bearing selected X-linked alleles that regulate X chromosome choice to demonstrate that the phenotypes of all three mutations are consistent with models in which the mutations have affected molecules involved specifically in the choice or the initiation of X inactivation.


Asunto(s)
Alquilantes/farmacología , Epigénesis Genética , Etilnitrosourea/farmacología , Ratones/genética , Mutagénesis , Mutación , Alelos , Animales , Mapeo Cromosómico , Cromosomas de los Mamíferos , Compensación de Dosificación (Genética) , Relación Dosis-Respuesta a Droga , Femenino , Fertilidad , Expresión Génica , Silenciador del Gen , Impresión Genómica , Masculino , Ratones/embriología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos , Modelos Genéticos , Linaje , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...