Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Colloid Interface Sci ; 663: 869-879, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447401

RESUMEN

Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate). By adjusting the electrospinning parameters, we produced three distinct nonwovens with varying average fiber diameters, ranging from 0.4 µm to 2 µm. These samples were characterized and tested for their efficacy in removing dammar varnish from painted surfaces. In particular, the cleaning process was monitored using macroscale PL (photoluminescence) imaging in real-time, while post-application examination of the mats was performed through scanning electron microscopy. The solvent evaporation rate from the different nonwovens was evaluated using gravimetric analysis and Proton Transfer Reaction- Time-of-Flight. It was observed that the application of the nonwovens with small or intermediate pore sizes for the removal of the terpenic varnish resulted in the swollen resin being absorbed into the mats, showcasing a peel-off effect. Thus, this protocol eliminates the need for further potentially detrimental removal procedures involving cotton swabs. The experimental data suggests that the peel-off effect relates to the microporosity of the mats, which enhances the capillary rise of the swollen varnish. Furthermore, the application of these systems to historical paintings underwent preliminary validation using a real painting from the 20th century.

2.
Proc Biol Sci ; 290(2002): 20230316, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434527

RESUMEN

The peopling of the Americas and human interaction with the Pleistocene megafauna in South America remain hotly debated. The Santa Elina rock shelter in Central Brazil shows evidence of successive human settlements from around the last glacial maximum (LGM) to the Early Holocene. Two Pleistocene archaeological layers include rich lithic industry associated with remains of the extinct giant ground sloth Glossotherium phoenesis. The remains include thousands of osteoderms (i.e. dermal bones), three of which were human-modified. In this study, we perform a traceological analysis of these artefacts by optical microscopy, non-destructive scanning electron microscopy, UV/visible photoluminescence and synchrotron-based microtomography. We also describe the spatial association between the giant sloth bone remains and stone tools and provide a Bayesian age model that confirms the timing of this association in two time horizons of the Pleistocene in Santa Elina. The conclusion from our traceological study is that the three giant sloth osteoderms were intentionally modified into artefacts before fossilization of the bones. This provides additional evidence for the contemporaneity of humans and megafauna, and for the human manufacturing of personal artefacts on bone remains of ground sloths, around the LGM in Central Brazil.


Asunto(s)
Perezosos , Xenarthra , Humanos , Animales , Brasil , Artefactos , Teorema de Bayes
3.
Integr Zool ; 18(1): 15-26, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35500584

RESUMEN

Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.


Asunto(s)
Porfirinas , Animales , Porfirinas/química , Ecosistema , Mamíferos
4.
Anal Chem ; 94(7): 3103-3110, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35138807

RESUMEN

Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (µ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (µ-FTIR ≈ 102 µm3, O-PTIR ≈ 10-1 µm3, PTIR ≈ 10-5 µm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 µm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.

5.
J Synchrotron Radiat ; 28(Pt 6): 1858-1864, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738940

RESUMEN

X-ray absorption and optical luminescence can both provide valuable but very different information on the chemical and physical properties of materials. Although it is known that the spectral characteristics of many materials are highly heterogeneous on the micro- and/or nanoscale, no methodology has so far been shown to be capable of spatially resolving both full X-ray absorption and X-ray excited optical luminescence (XEOL) spectra on the nanoscale in a correlative manner. For this purpose, the scanning transmission X-ray microscope at the HERMES beamline of the SOLEIL synchrotron was equipped with an optical detection system capable of recording high-resolution XEOL spectra using a 40 nm soft X-ray probe. The functionality of the system was demonstrated by analyzing ZnO powder dispersions - showing simultaneously the X-ray linear dichroism and XEOL behavior of individual submicrometric ZnO crystallites.


Asunto(s)
Luminiscencia , Sincrotrones , Radiografía , Espectroscopía de Absorción de Rayos X , Rayos X
6.
Sci Rep ; 11(1): 20208, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642377

RESUMEN

Cellulose nitrate (CN) is an intrinsically unstable material that puts at risk the preservation of a great variety of objects in heritage collections, also posing threats to human health. For this reason, a detailed investigation of its degradation mechanisms is necessary to develop sustainable conservation strategies. To investigate novel probes of degradation, we implemented deep UV photoluminescence micro spectral-imaging, for the first time, to characterize a corpus of historical systems composed of cellulose nitrate. The analysis of cinematographic films and everyday objects dated from the nineteenth c./early twentieth c. (Perlov's collection), as well as of photo-aged CN and celluloid references allowed the identification of novel markers that correlate with different stages of CN degradation in artworks, providing insight into the role played by plasticizers, fillers, and other additives in stability. By comparison with photoaged references of CN and celluloid (70% CN and 30% camphor), it was possible to correlate camphor concentration with a higher rate of degradation of the cinematographic films. Furthermore, the present study investigates, at the sub-microscale, materials heterogeneity that correlates to the artworks' history, associating the different emission profiles of zinc oxide to specific color formulations used in the late nineteenth and early twentieth centuries.

7.
J Synchrotron Radiat ; 28(Pt 4): 1090-1099, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212872

RESUMEN

X-ray linear dichroism (XLD) is a fundamental property of many ordered materials that can for instance provide information on the origin of magnetic properties and the existence of differently ordered domains. Conventionally, measurements of XLD are performed on single crystals, crystalline thin films, or highly ordered nanostructure arrays. Here, it is demonstrated how quantitative measurements of XLD can be performed on powders, relying on the random orientation of many particles instead of the controlled orientation of a single ordered structure. The technique is based on a scanning X-ray transmission microscope operated in the soft X-ray regime. The use of a Fresnel zone plate allows X-ray absorption features to be probed at ∼40 nm lateral resolution - a scale small enough to probe the individual crystallites in most powders. Quantitative XLD parameters were then retrieved by determining the intensity distributions of certain diagnostic dichroic absorption features, estimating the angle between their transition dipole moments, and fitting the distributions with four-parameter dichroic models. Analysis of several differently produced ZnO powders shows that the experimentally obtained distributions indeed follow the theoretical model for XLD. Making use of Monte Carlo simulations to estimate uncertainties in the calculated dichroic model parameters, it was established that longer X-ray exposure times lead to a decrease in the amplitude of the XLD effect of ZnO.

8.
Acc Chem Res ; 54(13): 2823-2832, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34143613

RESUMEN

The chemical study of materials from natural history and cultural heritage, which provide information for art history, archeology, or paleontology, presents a series of specific challenges. The complexity of these ancient and historical materials, which are chemically heterogeneous, the product of alteration processes, and inherently not reproducible, is a major obstacle to a thorough understanding of their making and long-term behavior (e.g., fossilization). These challenges required the development of methodologies and instruments coupling imaging and data processing approaches that are optimized for the specific properties of the materials. This Account discusses how these characteristics not only constrain their study but also open up specific innovative avenues for providing key historical information. Synchrotron methods have extensively been used since the late 1990s to study heritage objects, in particular for their potential to provide speciation information from excitation spectroscopies and to image complex heritage objects and samples in two and three dimensions at high resolution. We examine in practice how the identification of key intrinsic chemical specificities has offered fertile ground for the development of novel synchrotron approaches allowing a better stochastic description of the properties of ancient and historical materials. These developments encompass three main aspects: (1) The multiscale heterogeneity of these materials can provide an essential source of information in the development of probes targeting their multiple scales of homogeneity. (2) Chemical alteration can be described in many ways, e.g., by segmenting datasets in a semiquantitative way to jointly inform morphological and chemical transformation pathways. (3) The intrinsic individuality of chemical signatures in artifacts triggers the development of specific strategies, such as those focusing on weak signal detection. We propose a rereading of the advent of these new methodologies for analysis and characterization and examine how they have led to innovative strategies combining materials science, instrument development, history, and data science. In particular, we show that spectral imaging and the search for correlations in image datasets have provided a powerful way to address what archeologists have called the uncertainty and ambiguity of the material record. This approach has implications beyond synchrotron techniques and extends in particular to a series of rapidly developing approaches that couple spectral and spatial information, as in hyperspectral imaging and spatially resolved mass spectrometry. The preeminence of correlations holds promise for the future development of machine learning methods for processing data on historical objects. Beyond heritage, these developments are an original source of inspiration for the study of materials in many related fields, such as environmental, geochemical, or life sciences, which deal with systems whose alteration and heterogeneity cannot be neglected.

9.
Bioessays ; 43(4): e2000295, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33543495

RESUMEN

Widespread preservation of fossilized biomolecules in many fossil animals has recently been reported in six studies, based on Raman microspectroscopy. Here, we show that the putative Raman signatures of organic compounds in these fossils are actually instrumental artefacts resulting from intense background luminescence. Raman spectroscopy is based on the detection of photons scattered inelastically by matter upon its interaction with a laser beam. For many natural materials, this interaction also generates a luminescence signal that is often orders of magnitude more intense than the light produced by Raman scattering. Such luminescence, coupled with the transmission properties of the spectrometer, induced quasi-periodic ripples in the measured spectra that have been incorrectly interpreted as Raman signatures of organic molecules. Although several analytical strategies have been developed to overcome this common issue, Raman microspectroscopy as used in the studies questioned here cannot be used to identify fossil biomolecules.


Asunto(s)
Fósiles , Espectrometría Raman , Animales , Artefactos , Preservación Biológica
10.
Sci Rep ; 10(1): 21715, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303851

RESUMEN

Leonardo da Vinci (1452-1519) is a key artistic and scientific figure of the Renaissance. He is renowned for his science of art, taking advantage of his acute observations of nature to achieve striking pictorial results. This study describes the analysis of an exceptional sample from one of Leonardo's final masterpieces: The Virgin and Child with St. Anne (Musée du Louvre, Paris, France). The sample was analyzed at the microscale by synchrotron-based hyperspectral photoluminescence imaging and high-angular X-ray diffraction. The results demonstrate Leonardo's use of two subtypes of lead white pigment, thus revealing how he must have possessed a precise knowledge of his materials; carefully selecting them according to the aesthetical results he aimed at achieving in each painting. This work provides insights on how Leonardo obtained these grades of pigment and proposes new clues regarding the optical and/or working properties he may have tried to achieve.

11.
Proc Natl Acad Sci U S A ; 117(33): 19670-19676, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747556

RESUMEN

The understanding of fossilization mechanisms at the nanoscale remains extremely challenging despite its fundamental interest and its implications for paleontology, archaeology, geoscience, and environmental and material sciences. The mineralization mechanism by which cellulosic, keratinous, and silk tissues fossilize in the vicinity of archaeological metal artifacts offers the most exquisite preservation through a mechanism unexplored on the nanoscale. It is at the center of the vast majority of ancient textiles preserved under nonextreme conditions, known through extremely valuable fragments. Here we show the reconstruction of the nanoscale mechanism leading to the preservation of an exceptional collection of ancient cellulosic textiles recovered in the ancient Near East (4,000 to 5,000 years ago). We demonstrate that even the most mineralized fibers, which contain inorganic compounds throughout their histology, enclose preserved cellulosic remains in place. We evidence a process that combines the three steps of water transport of biocidal metal cations and soil solutes, degradation and loss of crystallinity of cellulosic polysaccharides, and silicification.

12.
Biomacromolecules ; 21(7): 2795-2807, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32539350

RESUMEN

X-ray analytical techniques are increasingly being used to study manuscripts and works of art on paper, whether with laboratory equipment or synchrotron sources. However, it is difficult to anticipate the impact of X-ray photons on paper- and cellulose-based artifacts, particularly due to the large variety of their constituents and degradation levels, and the subsequent material multiscale heterogeneity. In this context, this work aims at developing an analytical approach to study the modifications in paper upon synchrotron radiation (SR) X-ray radiation using analytical techniques, which are fully complementary and highly sensitive, yet not frequently used together. At the molecular scale, cellulose chain scissions and hydroxyl free radicals were measured using chromatographic separation techniques (size-exclusion chromatography-multiangle laser light scattering-differential refractive index (SEC-MALS-DRI) and reversed-phase high-performance liquid chromatography-fluorescence detector-diode array detector (RP-HPLC-FLD-DAD)), while the optical properties of paper were characterized using spectroscopy (UV luminescence and diffuse reflectance). These techniques showed different sensitivities toward the detection of changes. The modifications in the cellulosic material were monitored in real time, within a few days, and up to 2 years following the irradiation to define a lowest observed adverse effect dose (LOAED). As paper is a hygroscopic material, the impact of the humidity in the environment was studied using this approach. Three levels of moisture content in the paper, achieved by conditioning the samples and irradiating them at different relative humidities (RHs), were studied (0, 50, 80% RH). It was shown that very low moisture content accelerated molecular and optical modifications.


Asunto(s)
Sincrotrones , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Radiografía , Rayos X
13.
J Struct Biol ; 211(1): 107497, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32220629

RESUMEN

Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.


Asunto(s)
Exoesqueleto/ultraestructura , Calcificación Fisiológica/genética , Ostreidae/ultraestructura , Proteoma/genética , Exoesqueleto/metabolismo , Animales , Minerales/metabolismo , Ostreidae/genética , Ostreidae/fisiología
14.
Anal Chem ; 91(23): 14887-14895, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31660714

RESUMEN

Zinc oxide (ZnO) is a II-VI semiconductor that has been used for the last 150 years as an artists' pigment under the name of zinc white. Oil paints containing zinc white are known to be prone to the formation of zinc carboxylates, which can cause protrusions and mechanical failure. In this article, it is demonstrated how a multispectral synchrotron-based deep-UV photoluminescence microimaging technique can be used to show the distribution of zinc soaps on the submicrometer scale and how this information is used to further the understanding of zinc white degradation processes in oil paint. The technique is based on the luminescence of zinc soaps in the near-UV (∼3.65 eV) upon excitation in the deep-UV (4.51 eV), involving transitions that are argued to subsequently involve ligand-to-metal and metal-to-ligand charge transfer with intermediate structural reconfiguration. Because the primary emission peak lies at a higher energy than the band gap of ZnO (3.3 eV), the signal can easily be isolated from the pigment's very intense band gap and trap state emission by employing a multispectral acquisition approach. Moreover, analysis at such short wavelengths, in combination with a UV-transparent optical setup, allows for lateral resolution on the order of 200 nm to be obtained. The unprecedented capabilities of the microimaging technique are illustrated by showing its application to the study of a historical cross section from an early 20th century painting by Piet Mondrian. Revealing the submicrometer distribution of crystalline zinc soaps in this cross section provides new insights that suggest that microfissures, the starting points of paint delamination, are the result of an overall expansion of a heavily saponified zinc white layer.

15.
Angew Chem Int Ed Engl ; 58(34): 11652-11656, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31226237

RESUMEN

Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with µ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.

16.
Sci Rep ; 9(1): 5388, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926879

RESUMEN

The phenomenon of fluorescence can be used by animals to change effective colouration or patterning, potentially to serve functions including intra- and interspecific signalling. Initially believed to be restricted to marine animals, fluorescent colours are now being described in an increasing number of terrestrial species. Here, we describe unique, highly fluorescent patterns in two species of pumpkin toadlets (Brachycephalus ephippium and B. pitanga). We establish that the origin of the fluorescence lies in the dermal bone of the head and back, visible through a particularly thin skin. By comparing them to those of the closely related species Ischnocnema parva, we demonstrate that pumpkin toadlets' bones are exceptionally fluorescent. We characterize the luminescence properties of the toadlets' bones and discuss the potential function of fluorescent patterns in natural lighting conditions.


Asunto(s)
Anuros/metabolismo , Animales , Anuros/anatomía & histología , Fluorescencia , Especificidad de la Especie
17.
Anal Chem ; 91(3): 1815-1825, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30608138

RESUMEN

The detailed description of corrosion processes in ancient and historical metal artifacts currently relies on the in-depth study of prepared cross sections. The in-plane elemental and phase distributions can be established from a combination of light and electron microscopy characterization. Here, we show that high-resolution virtual sectioning through synchrotron X-ray microcomputed tomography allows a precise noninvasive 3D description of the distribution of both internal and external mineral phases in whole objects. In fragments of early copper artifacts (third-second millennium BC) from Southern Mesopotamia and the Indus valley, this approach provided essential clues on long-term corrosion processes. Major and minor phases were identified through semiquantitative evaluation of attenuation coefficients using polychromatic X-ray illumination. We found evidence for initially unidentified phases through statistical processing of images. We discuss interpretation of the distribution of these phases. A good correlation between the corrosion phases identified by CT and by invasive BSE-SEM is demonstrated. In addition to the stratigraphy of the copper corrosion compounds, we examine and discuss the variations observed in the attenuation coefficients of Cu(I) phases. Semiquantitative synchrotron X-ray microtomography phase mapping requires no specific sample preparation, in particular polishing or surface finishing, and any material tearing or displacement is avoided. We also provide evidence for the noninvasive observation of phases rapidly altered upon preparation of real cross sections. The method can be applied when cross-sectioning even of minute fragments is impossible.

18.
Sci Rep, v. 9, 5388, mar. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2709

RESUMEN

The phenomenon of fluorescence can be used by animals to change effective colouration or patterning, potentially to serve functions including intra- and interspecific signalling. Initially believed to be restricted to marine animals, fluorescent colours are now being described in an increasing number of terrestrial species. Here, we describe unique, highly fluorescent patterns in two species of pumpkin toadlets (Brachycephalus ephippium and B. pitanga). We establish that the origin of the fluorescence lies in the dermal bone of the head and back, visible through a particularly thin skin. By comparing them to those of the closely related species Ischnocnema parva, we demonstrate that pumpkin toadlets' bones are exceptionally fluorescent. We characterize the luminescence properties of the toadlets' bones and discuss the potential function of fluorescent patterns in natural lighting conditions.

19.
Sci Rep ; v. 9: 5388, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15913

RESUMEN

The phenomenon of fluorescence can be used by animals to change effective colouration or patterning, potentially to serve functions including intra- and interspecific signalling. Initially believed to be restricted to marine animals, fluorescent colours are now being described in an increasing number of terrestrial species. Here, we describe unique, highly fluorescent patterns in two species of pumpkin toadlets (Brachycephalus ephippium and B. pitanga). We establish that the origin of the fluorescence lies in the dermal bone of the head and back, visible through a particularly thin skin. By comparing them to those of the closely related species Ischnocnema parva, we demonstrate that pumpkin toadlets' bones are exceptionally fluorescent. We characterize the luminescence properties of the toadlets' bones and discuss the potential function of fluorescent patterns in natural lighting conditions.

20.
Top Curr Chem (Cham) ; 374(1): 7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27572990

RESUMEN

Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.


Asunto(s)
Arqueología , Paleontología , Sincrotrones , Historia Antigua , Humanos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...