Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
2.
Dan Med J ; 70(12)2023 Nov 16.
Article En | MEDLINE | ID: mdl-38018706

The history of the Greenlandic population has contributed to a unique genetic composition in which high-impact and often novel genetic variants segregate at a high frequency. As a result, research in smaller populations like the Greenlandic has the potential to reveal genetic variation and associations that are not present or discoverable in other populations. In this review, we provide a summary of our research in Greenlanders and our findings of genetic variants with high impact on metabolic health, and outline the implications that this research has for the equitable distribution of genomic precision medicine.


Genetics, Population , Humans , Greenland
3.
Commun Med (Lond) ; 3(1): 138, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37798471

BACKGROUND: Heterogeneity in type 2 diabetes presentation and progression suggests that precision medicine interventions could improve clinical outcomes. We undertook a systematic review to determine whether strategies to subclassify type 2 diabetes were associated with high quality evidence, reproducible results and improved outcomes for patients. METHODS: We searched PubMed and Embase for publications that used 'simple subclassification' approaches using simple categorisation of clinical characteristics, or 'complex subclassification' approaches which used machine learning or 'omics approaches in people with established type 2 diabetes. We excluded other diabetes subtypes and those predicting incident type 2 diabetes. We assessed quality, reproducibility and clinical relevance of extracted full-text articles and qualitatively synthesised a summary of subclassification approaches. RESULTS: Here we show data from 51 studies that demonstrate many simple stratification approaches, but none have been replicated and many are not associated with meaningful clinical outcomes. Complex stratification was reviewed in 62 studies and produced reproducible subtypes of type 2 diabetes that are associated with outcomes. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into clinically meaningful subtypes. CONCLUSION: Critical next steps toward clinical implementation are to test whether subtypes exist in more diverse ancestries and whether tailoring interventions to subtypes will improve outcomes.


In people with type 2 diabetes there may be differences in the way people present, including for example, their symptoms, body weight or how much insulin they make. We looked at recent publications describing research in this area to see whether it is possible to separate people with type 2 diabetes into different subgroups and, if so, whether these groupings were useful for patients. We found that it is possible to group people with type 2 diabetes into different subgroups and being in one subgroup can be more strongly linked to the likelihood of developing complications over others. This might mean that in the future we can treat people in different subgroups differently in ways that improves their treatment and their health but it requires further study.

4.
medRxiv ; 2023 Apr 20.
Article En | MEDLINE | ID: mdl-37131632

Heterogeneity in type 2 diabetes presentation, progression and treatment has the potential for precision medicine interventions that can enhance care and outcomes for affected individuals. We undertook a systematic review to ascertain whether strategies to subclassify type 2 diabetes are associated with improved clinical outcomes, show reproducibility and have high quality evidence. We reviewed publications that deployed 'simple subclassification' using clinical features, biomarkers, imaging or other routinely available parameters or 'complex subclassification' approaches that used machine learning and/or genomic data. We found that simple stratification approaches, for example, stratification based on age, body mass index or lipid profiles, had been widely used, but no strategy had been replicated and many lacked association with meaningful outcomes. Complex stratification using clustering of simple clinical data with and without genetic data did show reproducible subtypes of diabetes that had been associated with outcomes such as cardiovascular disease and/or mortality. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into meaningful groups. More studies are needed to test these subclassifications in more diverse ancestries and prove that they are amenable to interventions.

5.
Mol Genet Metab Rep ; 35: 100972, 2023 Jun.
Article En | MEDLINE | ID: mdl-37008541

Background: Functionally disruptive variants in the glucokinase gene (GCK) cause a form of mild non-progressive hyperglycemia, which does not require pharmacological treatment. A substantial proportion of patients with type 2 diabetes (T2D) carry GCK variants. We aimed to investigate whether carriers of rare GCK variants diagnosed with T2D have a glycemic phenotype and treatment response consistent with GCK-diabetes. Methods: Eight patients diagnosed with T2D from the Danish DD2 cohort who had previously undergone sequencing of GCK participated. Clinical examinations at baseline included an oral glucose tolerance test and continuous glucose monitoring. Carriers with a glycemic phenotype consistent with GCK-diabetes took part in a three-month treatment withdrawal. Results: Carriers of pathogenic and likely pathogenic variants had lower median fasting glucose and C-peptide levels compared to carriers of variants of uncertain significance and benign variants (median fasting glucose: 7.3 (interquartile range: 0.4) mmol/l vs. 9.5 (1.6) mmol/l, p = 0.04; median fasting C-peptide 902 (85) pmol/l vs. 1535 (295) pmol/l, p = 0.03). Four participants who discontinued metformin treatment and one diet-treated participant were reevaluated after three months. There was no deterioration of HbA1c or fasting glucose (median baseline HbA1c: 49 (3) vs. 51 (6) mmol/mol after three months, p = 0.4; median baseline fasting glucose: 7.3 (0.4) mmol/l vs. 7.0 (0.6) mmol/l after three months, p = 0.5). Participants did not consistently fulfill best practice guidelines for GCK screening nor clinical criteria for monogenic diabetes. Discussion: Carriers of pathogenic or likely pathogenic GCK variants identified by unselected screening in T2D should be reported, as they have a glycemic phenotype and treatment response consistent with GCK-diabetes. Variants of uncertain significance should be interpreted with care. Systematic genetic screening of patients with common T2D receiving routine care can lead to the identification and precise care of patients with misclassified GCK-diabetes who are not identifiable through common genetic screening criteria.

6.
Lancet Reg Health Eur ; 24: 100529, 2023 Jan.
Article En | MEDLINE | ID: mdl-36649380

Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (ß = -232 pmol/L, ßSD = -0.695, P = 4.43 × 10-4) and higher 30-min glucose (ß = 1.20 mmol/L, ßSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10-6) and HbA1c (ß = 0.113 HbA1c%, ßSD = 0.205, P = 7.84 × 10-3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1-3% in large populations. Funding: Novo Nordisk Foundation, Independent Research Fund Denmark, and Karen Elise Jensen's Foundation.

7.
Eur J Endocrinol ; 186(5): 511-521, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35212643

Objective: Ectopic liver fat deposition, resulting from impaired subcutaneous adipose tissue expandability, may represent an age-dependent key feature linking low birth weight (LBW) with increased risk of type 2 diabetes (T2D). We examined whether presumably healthy early middle-aged, non-obese LBW subjects exhibit increased liver fat content, whether increased liver fat in LBW is associated with the severity of dysmetabolic traits and finally whether such associations may be confounded by genetic factors. Methods: Using 1H magnetic resonance spectroscopy, we measured hepatic fat content in 26 early middle-aged, non-obese LBW and 22 BMI-matched normal birth weight (NBW) males. Endogenous glucose production was measured by stable isotopes, and a range of plasma adipokine and gut hormone analytes were measured by multiplex ELISA. Genetic risk scores were calculated from genome-wide association study (GWAS) data for birth weight, height, T2D, plasma cholesterol and risk genotypes for non-alcoholic fatty liver disease (NAFLD). Results: The LBW subjects had significantly increased hepatic fat content compared with NBW controls (P= 0.014), and 20% of LBW vs no controls had overt NAFLD. LBW subjects with NAFLD displayed widespread metabolic changes compared with NBW and LBW individuals without NAFLD, including hepatic insulin resistance, plasma adipokine and gut hormone perturbations as well as dyslipidemia. As an exception, plasma adiponectin levels were lower in LBW subjects both with and without NAFLD as compared to NBW controls. Genetic risk for selected differential traits did not differ between groups. Conclusion: Increased liver fat content including overt NAFLD may be on the critical path linking LBW with increased risk of developing T2D in a non-genetic manner.


Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Birth Weight , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Humans , Infant, Low Birth Weight , Infant, Newborn , Liver/diagnostic imaging , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/complications
8.
Cochrane Database Syst Rev ; 6: CD012906, 2020 Jun 05.
Article En | MEDLINE | ID: mdl-32501595

BACKGROUND: Worldwide, there is an increasing incidence of type 2 diabetes mellitus (T2DM). Metformin is still the recommended first-line glucose-lowering drug for people with T2DM. Despite this, the effects of metformin on patient-important outcomes are still not clarified. OBJECTIVES: To assess the effects of metformin monotherapy in adults with T2DM. SEARCH METHODS: We based our search on a systematic report from the Agency for Healthcare Research and Quality, and topped-up the search in CENTRAL, MEDLINE, Embase, WHO ICTRP, and ClinicalTrials.gov. Additionally, we searched the reference lists of included trials and systematic reviews, as well as health technology assessment reports and medical agencies. The date of the last search for all databases was 2 December 2019, except Embase (searched up 28 April 2017). SELECTION CRITERIA: We included randomised controlled trials (RCTs) with at least one year's duration comparing metformin monotherapy with no intervention, behaviour changing interventions or other glucose-lowering drugs in adults with T2DM. DATA COLLECTION AND ANALYSIS: Two review authors read all abstracts and full-text articles/records, assessed risk of bias, and extracted outcome data independently. We resolved discrepancies by involvement of a third review author. For meta-analyses we used a random-effects model with investigation of risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, using 95% confidence intervals (CIs) for effect estimates. We assessed the overall certainty of the evidence by using the GRADE instrument. MAIN RESULTS: We included 18 RCTs with multiple study arms (N = 10,680). The percentage of participants finishing the trials was approximately 58% in all groups. Treatment duration ranged from one to 10.7 years. We judged no trials to be at low risk of bias on all 'Risk of bias' domains. The main outcomes of interest were all-cause mortality, serious adverse events (SAEs), health-related quality of life (HRQoL), cardiovascular mortality (CVM), non-fatal myocardial infarction (NFMI), non-fatal stroke (NFS), and end-stage renal disease (ESRD). Two trials compared metformin (N = 370) with insulin (N = 454). Neither trial reported on all-cause mortality, SAE, CVM, NFMI, NFS or ESRD. One trial provided information on HRQoL but did not show a substantial difference between the interventions. Seven trials compared metformin with sulphonylureas. Four trials reported on all-cause mortality: in three trials no participant died, and in the remaining trial 31/1454 participants (2.1%) in the metformin group died compared with 31/1441 participants (2.2%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on SAE: in two trials no SAE occurred (186 participants); in the other trial 331/1454 participants (22.8%) in the metformin group experienced a SAE compared with 308/1441 participants (21.4%) in the sulphonylurea group (very low-certainty evidence). Two trials reported on CVM: in one trial no CVM was observed and in the other trial 4/1441 participants (0.3%) in the metformin group died of cardiovascular reasons compared with 8/1447 participants (0.6%) in the sulphonylurea group (very low-certainty evidence). Three trials reported on NFMI: in two trials no NFMI occurred, and in the other trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 15/1441 participants (1.0%) in the sulphonylurea group (very low-certainty evidence). One trial reported no NFS occurred (very low-certainty evidence). No trial reported on HRQoL or ESRD. Seven trials compared metformin with thiazolidinediones (very low-certainty evidence for all outcomes). Five trials reported on all-cause mortality: in two trials no participant died; the overall RR was 0.88, 95% CI 0.55 to 1.39; P = 0.57; 5 trials; 4402 participants). Four trials reported on SAE, the RR was 0,95, 95% CI 0.84 to 1.09; P = 0.49; 3208 participants. Four trials reported on CVM, the RR was 0.71, 95% CI 0.21 to 2.39; P = 0.58; 3211 participants. Three trial reported on NFMI: in two trials no NFMI occurred and in one trial 21/1454 participants (1.4%) in the metformin group experienced a NFMI compared with 25/1456 participants (1.7%) in the thiazolidinedione group. One trial reported no NFS occurred. No trial reported on HRQoL or ESRD. Three trials compared metformin with dipeptidyl peptidase-4 inhibitors (one trial each with saxagliptin, sitagliptin, vildagliptin with altogether 1977 participants). There was no substantial difference between the interventions for all-cause mortality, SAE, CVM, NFMI and NFS (very low-certainty evidence for all outcomes). One trial compared metformin with a glucagon-like peptide-1 analogue (very low-certainty evidence for all reported outcomes). There was no substantial difference between the interventions for all-cause mortality, CVM, NFMI and NFS. One or more SAEs were reported in 16/268 (6.0%) of the participants allocated to metformin compared with 35/539 (6.5%) of the participants allocated to a glucagon-like peptide-1 analogue. HRQoL or ESRD were not reported. One trial compared metformin with meglitinide and two trials compared metformin with no intervention. No deaths or SAEs occurred (very low-certainty evidence) no other patient-important outcomes were reported. No trial compared metformin with placebo or a behaviour changing interventions. Four ongoing trials with 5824 participants are likely to report one or more of our outcomes of interest and are estimated to be completed between 2018 and 2024. Furthermore, 24 trials with 2369 participants are awaiting assessment. AUTHORS' CONCLUSIONS: There is no clear evidence whether metformin monotherapy compared with no intervention, behaviour changing interventions or other glucose-lowering drugs influences patient-important outcomes.


Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Adult , Carbamates/adverse effects , Carbamates/therapeutic use , Cardiovascular Diseases/mortality , Cause of Death , Diabetes Mellitus, Type 2/mortality , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/analogs & derivatives , Humans , Hypoglycemic Agents/adverse effects , Insulin/therapeutic use , Metformin/adverse effects , Myocardial Infarction/epidemiology , Piperidines/adverse effects , Piperidines/therapeutic use , Quality of Life , Randomized Controlled Trials as Topic , Stroke/epidemiology , Sulfonylurea Compounds/adverse effects , Sulfonylurea Compounds/therapeutic use
9.
Calcif Tissue Int ; 104(5): 544-553, 2019 05.
Article En | MEDLINE | ID: mdl-30456556

Chronic non-bacterial osteomyelitis (CNO) is a rare auto-inflammatory bone disorder, with a prevalence of around one in a million patients. In the more severe form, it is referred to as chronic recurrent multifocal osteomyelitis (CRMO). We present the current knowledge on epidemiology, pathophysiology as well as diagnostic options and treatment regimens. CNO/CRMO most commonly affects children and lesions are often seen in the metaphyseal plates of the long bones, but cases have been described affecting all age groups as well as lesions in almost every bone. It is, therefore, a disease that clinicians can encounter in many different settings. Diagnosis is mainly a matter of exclusion from differential diagnoses such as bacterial osteomyelitis and cancer. Magnetic resonance imaging is the best radiological method for diagnosis coupled with a low-grade inflammation and a history of recurring episodes. Treatment is based on case reports and consists of alleviating symptoms with non-steroidal anti-inflammatory drugs since the disease is often self-limiting. Recently, more active treatments using either bisphosphonates or biological treatment are becoming more common, to prevent long term bone damage. In general, due to its rarity, much remains unclear regarding CNO/CRMO. We review the known literature on CNO/CRMO and propose areas of interest as well as possible ways to make current diagnostic criteria more detailed. We also find unifocal cases of the jaw to be a possible sub-type that may need its own set of criteria.


Osteomyelitis/diagnosis , Osteomyelitis/therapy , Anti-Inflammatory Agents, Non-Steroidal , Bone and Bones/pathology , Chronic Disease , Diagnosis, Differential , Diphosphonates/therapeutic use , Genetic Predisposition to Disease , Humans , Inflammation/drug therapy , Magnetic Resonance Imaging , Neoplasms , Osteomyelitis/epidemiology , Recurrence , Treatment Outcome
10.
J Clin Endocrinol Metab ; 104(5): 1766-1776, 2019 05 01.
Article En | MEDLINE | ID: mdl-30521046

CONTEXT AND OBJECTIVE: Being born small or large for gestational age and intrauterine exposure to gestational diabetes (GDM) increase the risk of type 2 diabetes in the offspring. However, the potential combined deleterious effects of size at birth and GDM exposure remains unknown. We examined the independent effect of size at birth and the influence of GDM exposure in utero on cardiometabolic traits, body composition, and puberty status in children. DESIGN, PARTICIPANTS, AND METHODS: The present study was a longitudinal birth cohort study. We used clinical data from 490 offspring of mothers with GDM and 527 control offspring aged 9 to 16 years, born singleton at term from the Danish National Birth Cohort with available birthweight data. RESULTS: We found no evidence of a U-shaped association between size at birth (expressed as birthweight, sex, and gestational age adjusted z-score) and cardiometabolic traits. Body size in childhood and adolescence reflected the size at birth but was not reflected in any metabolic outcome. No synergistic adverse effect of being born small or large for gestational age and exposure to GDM was shown. However, GDM was associated with an adverse metabolic profile and earlier onset of female puberty in childhood and adolescence independently of size at birth. CONCLUSION: In childhood and adolescence, we found GDM was a stronger predictor of dysmetabolic traits than size at birth. The combination of being born small or large and exposed to GDM does not exacerbate the metabolic profile in the offspring.


Birth Weight , Cardiovascular Diseases/diagnosis , Diabetes, Gestational/physiopathology , Metabolic Diseases/diagnosis , Prenatal Exposure Delayed Effects/diagnosis , Sexual Maturation , Adolescent , Adult , Body Mass Index , Cardiovascular Diseases/epidemiology , Child , Denmark/epidemiology , Female , Follow-Up Studies , Gestational Age , Humans , Incidence , Infant, Newborn , Longitudinal Studies , Male , Metabolic Diseases/epidemiology , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prognosis
11.
Genes (Basel) ; 5(3): 508-17, 2014 Jul 09.
Article En | MEDLINE | ID: mdl-25010252

Murine models suggest that the microRNAs miR-103 and miR-143 may play central roles in the regulation of subcutaneous adipose tissue (SAT) and development of type 2 diabetes (T2D). The microRNA miR-483-3p may reduce adipose tissue expandability and cause ectopic lipid accumulation, insulin resistance and T2D. We aimed to explore the genetic and non-genetic factors that regulate these microRNAs in human SAT, and to investigate their impact on metabolism in humans. Levels of miR-103, miR-143 and miR-483-3p were measured in SAT biopsies from 244 elderly monozygotic and dizygotic twins using real-time PCR. Heritability estimates were calculated and multiple regression analyses were performed to study associations between these microRNAs and measures of metabolism, as well as between these microRNAs and possible regulating factors. We found that increased BMI was associated with increased miR-103 expression levels. In addition, the miR-103 levels were positively associated with 2 h plasma glucose levels and hemoglobin A1c independently of BMI. Heritability estimates for all three microRNAs were low. In conclusion, the expression levels of miR-103, miR-143 and miR-483-3p in adipose tissue are primarily influenced by non-genetic factors, and miR-103 may be involved in the development of adiposity and control of glucose metabolism in humans.

...