Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613635

RESUMEN

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Asunto(s)
Residuos Sólidos , Zeolitas , Espectroscopía Infrarroja por Transformada de Fourier , Monitoreo del Ambiente , India , Carbono , Microscopía Electrónica de Rastreo
2.
Sci Total Environ ; 886: 164027, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37169190

RESUMEN

Microplastics (MPs) are one of the challenging and established contaminants that have adverse implications on human health. The focus of this study was to quantify and analyze the contribution of unscientific municipal solid waste (MSW) disposal sites to the MPs in the Jhelum River and the risk associated with it. Quantitative analysis of our study showed a mean MP concentration of 1474 ± 1026 particles/m3 for the entire stretch of the river. All the sites confirmed the presence of MPs with the concentration ranging from 600 particles/m3 to 2500 particles/m3. The size distribution of MPs suggested that 34 % of the microplastics ranged between 300 µm to 75 µm while 66 % of the particles varied between 300 µm to 5 mm. The concentrations of MPs downstream of unscientific disposal sites were found to increase threefold to that of upstream. The Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the presence of polyethylene (PE) in the majority followed by polyvinyl chloride (PVC) and polypropylene (PP). The flakes were dominant throughout the river followed by filaments, fragments, and spherules. Count based Pollution level indexing (PLI) estimated 3-14 times MP contamination in the river with respect to contamination in glacial runoffs. The risk assessment study of the MPs indicated an increase of around 10.2 % in ingestion rates of MPs due to the unscientific disposal of MSW on the banks of the freshwater body. The values of polymer hazard index (PHI) and potential ecological risk index (PERI) were in the extreme case of pollution (PHI>1000 and PERI>1200). This study manifests the adversities of unscientific municipal solid waste disposal for timely waste management.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua Dulce/análisis , India
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA