Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38569543

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Bacteria , Cardiovascular Diseases , Cholesterol , Gastrointestinal Microbiome , Humans , Bacteria/metabolism , Cardiovascular Diseases/metabolism , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Feces/chemistry , Longitudinal Studies , Metabolome , Metabolomics , RNA, Ribosomal, 16S/metabolism
2.
bioRxiv ; 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37961379

In metagenomics, the pool of uncharacterized microbial enzymes presents a challenge for functional annotation. Among these, carbohydrate-active enzymes (CAZymes) stand out due to their pivotal roles in various biological processes related to host health and nutrition. Here, we present CAZyLingua, the first tool that harnesses protein language model embeddings to build a deep learning framework that facilitates the annotation of CAZymes in metagenomic datasets. Our benchmarking results showed on average a higher F1 score (reflecting an average of precision and recall) on the annotated genomes of Bacteroides thetaiotaomicron, Eggerthella lenta and Ruminococcus gnavus compared to the traditional sequence homology-based method in dbCAN2. We applied our tool to a paired mother/infant longitudinal dataset and revealed unannotated CAZymes linked to microbial development during infancy. When applied to metagenomic datasets derived from patients affected by fibrosis-prone diseases such as Crohn's disease and IgG4-related disease, CAZyLingua uncovered CAZymes associated with disease and healthy states. In each of these metagenomic catalogs, CAZyLingua discovered new annotations that were previously overlooked by traditional sequence homology tools. Overall, the deep learning model CAZyLingua can be applied in combination with existing tools to unravel intricate CAZyme evolutionary profiles and patterns, contributing to a more comprehensive understanding of microbial metabolic dynamics.

3.
Mol Ecol Resour ; 23(1): 312-325, 2023 Jan.
Article En | MEDLINE | ID: mdl-36001047

Microbiome studies are often limited by a lack of statistical power due to small sample sizes and a large number of features. This problem is exacerbated in correlative studies of multi-omic datasets. Statistical power can be increased by finding and summarizing modules of correlated observations, which is one dimensionality reduction method. Additionally, modules provide biological insight as correlated groups of microbes can have relationships among themselves. To address these challenges, we developed SCNIC: Sparse Cooccurrence Network Investigation for compositional data. SCNIC is open-source software that can generate correlation networks and detect and summarize modules of highly correlated features. Modules can be formed using either the Louvain Modularity Maximization (LMM) algorithm or a Shared Minimum Distance algorithm (SMD) that we newly describe here and relate to LMM using simulated data. We applied SCNIC to two published datasets and we achieved increased statistical power and identified microbes that not only differed across groups, but also correlated strongly with each other, suggesting shared environmental drivers or cooperative relationships among them. SCNIC provides an easy way to generate correlation networks, identify modules of correlated features and summarize them for downstream statistical analysis. Although SCNIC was designed considering properties of microbiome data, such as compositionality and sparsity, it can be applied to a variety of data types including metabolomics data and used to integrate multiple data types. SCNIC allows for the identification of functional microbial relationships at scale while increasing statistical power through feature reduction.


Microbiota , Software , Algorithms
...