Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(35): 12185-12189, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31286629

RESUMEN

Embedding cubane [M4 (OH)4 ] (M=Ni, Co) clusters within the matrix of metal-organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore-space partition of the cubic primitive minimal-surface net (MOF-14-type) has been realized. CTGU-15 made from the [Ni4 (OH)4 ] cluster not only has very high BET surface area (3537 m2 g-1 ), but also exhibits bi-microporous features with well-defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU-15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU-15 (1:2) made from ketjen black (KB) and CTGU-15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg-1 and excellent peak current density (29.8 mA cm-2 ) at low potential (0.6 V). The isostructural cobalt structure (CTGU-16) has also been synthesized, further expanding the application potential of this material type.

2.
Inorg Chem ; 58(9): 5837-5843, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30995020

RESUMEN

Developing high-efficiency and cost-effective electrocatalytic oxygen evolution reaction (OER) catalysts would determine the future distributions of energy conversion technologies. Metal-organic frameworks (MOFs), with unsaturated active metal sites, functionalized organic linkers, and large surface areas, are emerging heterogeneous electrocatalysts for the water oxidation process. Herein, we report an oxygen-evolving microporous (3,10)-connected Co6-based MOF (denoted as CTGU-14) for the electrocatalytic OER. Moreover, the integration of Co-MOF and SnO2, SnO2 (15%) & CTGU-14 composite attains remarkable electrochemical OER performance with a small Tafel slope of 68 mV·dec-1, a positive overpotential of 388 mV at 10 mA·cm-2, and overall durability in an alkali medium. The superior OER activities might be ascribed to more convenient electron transfer from the SnO2 additive to the electrode medium, effective surface area and unsaturated active cobalt centers, and more beneficial delivery for hydroxy radicals in the microporous Co-MOF skeleton in the process of the OER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...