Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Chem Biol Interact ; 393: 110944, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38518851

Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.


Acute Kidney Injury , Ferroptosis , Selenium , Animals , Humans , Mice , Acute Kidney Injury/chemically induced , Epithelial Cells/metabolism , Hypoxia , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium/pharmacology , Selenium-Binding Proteins/genetics , Selenium-Binding Proteins/metabolism
2.
Org Biomol Chem ; 22(4): 725-730, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38169000

Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.

3.
Chem Commun (Camb) ; 59(87): 13062-13065, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37849338

An electrochemical deoxygenative homo-coupling of aromatic aldehydes is achieved to selectively access bibenzyl and stilbene derivatives. The protocol allows the homo-coupling of aldehydes to occur after single-electron-reduction at the cathode. Taking advantage of the oxophilicity of triphenylphosphine, the electrochemical deoxygenation proceeds smoothly to give reductive homo-coupling products.

4.
J Chem Phys ; 158(15)2023 Apr 21.
Article En | MEDLINE | ID: mdl-37094018

Vibronic coupling is a critical mechanism in chemical reactions. However, its quantitative evaluation is challenging due to mathematical complexity and programming difficulty, and its experimental proof is often elusive due to overlap among neighboring states. Here, after exciting a vibrational level (ν = 0, 1, 2) of the intermediate N 1s→πg* core-excited state in N2 molecules, we separate the resonant Auger decay channels that lead to the lowest dissociation limit in the two-dimensional energy correlation maps. From three kinetic energy release spectra of these channels at different vibrational quantum numbers, we give the first experimental proof of the vibronic coupling between two resonant Auger final states 12Πg and 22Πg.

5.
Chem Commun (Camb) ; 59(37): 5587-5590, 2023 May 04.
Article En | MEDLINE | ID: mdl-37074813

The construction of diaryl alkanes from aromatic aldehydes or ketones with electron-deficient arenes is achieved in the presence of trivalent phosphine under electrochemical conditions. Reductive coupling between electron-deficient arenes and the carbonyl groups of aldehydes or ketones occurs at the cathode to yield diaryl alcohols. At the anode, the trivalent phosphine reagent may undergo single-electron oxidation to generate its radical cation, which reacts with the diaryl alcohols to form dehydroxylated products.

6.
J Transl Med ; 20(1): 452, 2022 10 04.
Article En | MEDLINE | ID: mdl-36195876

BACKGROUND: Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported. METHODS: Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC. RESULTS: Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells. CONCLUSION: In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.


Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Copper , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Prognosis
7.
Org Lett ; 24(40): 7476-7481, 2022 Oct 14.
Article En | MEDLINE | ID: mdl-36190448

Nonactivated alcohols along with arene compounds are used in electrochemical dehydroxylative arylation for constructing C(sp3)-C(sp2) bonds. The PIII reagent undergoes single-electron anodic oxidation to form its radical cation, which reacts with the alcohol to produce an alkoxytriphenylphosphine radical. Through spontaneous ß-scission of the phosphoranyl radical, the C-O bond is cleaved to form an alkyl radical species, which couples with the radical anion generated by cathodic reduction of the electron-poor arene to afford the dehydroxylative arylated product.

8.
Nat Commun ; 13(1): 5938, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209214

Sterically congested C-O and C-N bonds are ubiquitous in natural products, pharmaceuticals, and bioactive compounds. However, the development of a general method for the efficient construction of those sterically demanding covalent bonds still remains a formidable challenge. Herein, a photoredox-driven ring-opening C(sp3)-heteroatom bond formation of arylcyclopropanes is presented, which enables the construction of structurally diversified while sterically congested dialkyl ether, alkyl ester, alcohol, amine, chloride/fluoride, azide and also thiocyanate derivatives. The selective single electron oxidation of aryl motif associated with the thermodynamic driving force from ring strain-release is the key for this transformation. By this synergistic activation mode, C-C bond cleavage of otherwise inert cyclopropane framework is successfully unlocked. Further mechanistic and computational studies disclose a complete stereoinversion upon nucleophilic attack, thus proving a concerted SN2-type ring-opening functionalization manifold, while the regioselectivity is subjected to an orbital control scenario.


Biological Products , Thiocyanates , Amines/chemistry , Azides , Catalysis , Chlorides , Cyclopropanes , Esters , Ethers , Fluorides , Pharmaceutical Preparations
9.
Chem Commun (Camb) ; 58(79): 11155-11158, 2022 Oct 04.
Article En | MEDLINE | ID: mdl-36106949

Electrochemical reduction via paired electrolysis has been used to achieve deoxygenative reduction of ketones. As a result of the complexing of ketones with the triphenylphosphine radical cation generated by anodic oxidation, the reduction of carbonyl groups occurs readily. Through spontaneous ß-scission of phosphoranyl radicals, C-O bonds are cleaved to form benzylic radical intermediates. These radical species are either able to abstract hydrogen from MeCN or undergo reduction at the cathode to give carbanions, upon workup forming reductive hydrogenation of ketones.

10.
J Org Chem ; 87(19): 12963-12974, 2022 Oct 07.
Article En | MEDLINE | ID: mdl-36137279

Herein, N2-selective ß-thioalkylation of benzotriazoles with unactivated alkenes and styrenes is reported. The N2-selective ß-thioalkylation of benzotriazoles is highly stereospecific and works under simple and mild conditions, exhibiting excellent functional group tolerance. The high N2-selectivity is a consequence of the combination of hydrogen bonding and Lewis acid/base activation, which reverses the N2-position to be favored for alkylation.

11.
Chem Commun (Camb) ; 58(52): 7265-7268, 2022 Jun 28.
Article En | MEDLINE | ID: mdl-35674189

Defect-rich hcp UiO-66-NO2 was synthesized via mixed linker-induced crystal transformation from fcu UiO-66-NO2/NH2. The defect concentration and porosity of hcp UiO-66-NO2 can be fine-tuned by varying the BDC-NH2/BDC-NO2 ratio, which in turn endowed hcp UiO-66-NO2 with superior catalytic performance in the ring-opening reaction of epoxides with alcohols.

12.
Org Lett ; 24(20): 3668-3673, 2022 May 27.
Article En | MEDLINE | ID: mdl-35579356

An effective deoxygenative C(sp3)-C(sp3) bond formation reaction is achieved through electrochemical reduction of alcoholic phosphates or sulfonates with aldehydes or ketones. Alcohol derivatives of phosphates undergo single-electron reduction under electrochemical conditions followed by a spontaneous cleavage of the C-O bond with the exothermic loss of phosphate resulting in an alkyl radical species. Subsequently, radical intermediates are further reduced to carbanions at the cathode, which are in situ trapped by carbonyl compounds, thus accomplishing a deoxygenative Barbier-type reaction.

13.
Chem Sci ; 13(9): 2686-2691, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35340862

gem-Difluorocyclopropane diester is disclosed as a new type of donor-acceptor cyclopropane, which smoothly participates in (3 + 2)-cycloadditions with various aldehydes and ketones. This work represents the first application of gem-difluorine substituents as an unconventional donor group for activating cyclopropane substrates in catalytic cycloaddition reactions. With this method, a wide variety of densely functionalized gem-difluorotetrahydrofuran skeletons, which are otherwise difficult to prepare, could be readily assembled in high yields under mild reaction conditions. Computational studies show that the cleavage of the C-C bond between the difluorine and diester moieties occurs upon a SN2-type attack of the carbonyl oxygen.

14.
Sci Rep ; 12(1): 255, 2022 01 07.
Article En | MEDLINE | ID: mdl-34996948

Full-dose prednisone (FP) regimen in the treatment of high-risk immunoglobulin A nephropathy (IgAN) patients, is still controversial. The pulsed intravenous methylprednisolone combined with alternative low-dose prednisone (MCALP) might have a more favorable safety profile, which has not been fully investigated. Eighty-seven biopsy-proven IgAN adult patients and proteinuria between 1 and 3.5 g/24 h after ACEI/ARB for at least 90 days were randomly assigned to 6-month therapy: (1) MCALP group: 0.5 g of methylprednisolone intravenously for three consecutive days at the beginning of the course and 3rd month respectively, oral prednisone at a dose of 15 mg every other day for 6 months. (2) FP group: 0.8-1.0 mg/kg/days of prednisone (maximum 70 mg/day) for 2 months, then tapered by 5 mg every 10 days for the next 4 months. All patients were followed up for another 12 months. The primary outcome was complete remission (CR) of proteinuria at 12 months. The percentage of CR at 12th and 18th month were similar in the MCALP and FP groups (51% vs 58%, P = 0.490, at 12th month; 60% vs 56%, P = 0.714, at 18th month). The cumulative dosages of glucocorticoid were less in the MCALP group than FP group (4.31 ± 0.26 g vs 7.34 ± 1.21 g, P < 0.001). The analysis of the correlation between kidney biopsy Oxford MEST-C scores with clinical outcomes indicated the percentages of total remission was similar between two groups with or without M1, E1, S1, T1/T2, and C1/C2. More patients in the FP group presented infections (8% in MCALP vs 21% in FP), weight gain (4% in MCALP vs 19% in FP) and Cushing syndrome (3% in MCALP vs 18% in FP). These data indicated that MCALP maybe one of the choices for IgAN patients with a high risk for progression into ESKD.Trial registration: The study approved by the Chinese Clinical Trial Registry (registration date 13/01/2018, approval number ChiCTR1800014442, https://www.chictr.org.cn/ ).


Glomerulonephritis, IGA/drug therapy , Glucocorticoids/administration & dosage , Methylprednisolone/administration & dosage , Prednisone/administration & dosage , Proteinuria/drug therapy , Administration, Intravenous , Administration, Oral , Adult , Disease Progression , Drug Tapering , Drug Therapy, Combination , Female , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/immunology , Glucocorticoids/adverse effects , Humans , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/prevention & control , Male , Methylprednisolone/adverse effects , Prednisone/adverse effects , Prospective Studies , Proteinuria/diagnosis , Proteinuria/immunology , Pulse Therapy, Drug , Remission Induction , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
15.
BME Front ; 2022: 9867373, 2022.
Article En | MEDLINE | ID: mdl-37850176

Objective and Impact Statement. Distinguishing malignant lymphocytes from normal ones is vital in pathological examination. We proposed an inverse light scattering (ILS) method for label-free suspended lymphocytes with complex fine structures to identify their volumes for pathological state. Introduction. Light scattering as cell's "fingerprint" provides valuable morphology information closely related to its biophysical states. However, the detail relationships between the morphology with complex fine structures and its scattering characters are not fully understood. Methods. To quantitatively inverse the volumes of membrane and nucleus as the main scatterers, clinical lymphocyte morphologies were modeled combining the Gaussian random sphere geometry algorithm by 750 reconstructed results after confocal scanning, which allowed the accurate simulation to solve ILS problem. For complex fine structures, the specificity for ILS study was firstly discussed (to our knowledge) considering the differences of not only surface roughness, posture, but also the ratio of nucleus to the cytoplasm and refractive index. Results. The volumes of membrane and nucleus were proved theoretically to have good linear relationship with the effective area and entropy of forward scattering images. Their specificity deviations were less than 3.5%. Then, our experimental results for microsphere and clinical leukocytes showed the Pearson product-moment correlation coefficients (PPMCC) of this linear relationship were up to 0.9830~0.9926. Conclusion. Our scattering inversion method could be effectively applied to identify suspended label-free lymphocytes without destructive sample pretreatments and complex experimental systems.

16.
Immunol Invest ; 51(2): 301-315, 2022 Feb.
Article En | MEDLINE | ID: mdl-34490837

BACKGROUND: Peritoneal fibrosis (PF) can reduce the efficiency of peritoneal dialysis and eventually lead to ultrafiltration failure. Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is the start of PF. Macrophages are involved in the process. This study was to investigate the effect of macrophage polarization on EMT of PMCs. METHODS: Monocyte-macrophage cells (THP-1) were treated to induce macrophage subsets (M1, M2a, M2c). The inducing was assessed by detecting protein and mRNA expression of cytokines using ELISA and RT-PCR. Subsequently, PMCs were co-cultured with M1, M2a and M2c, respectively, in Transwell chambers for 48 h and then expressions of E-cadherin and α-SMA were determined in PMCs. The PMCs that were not co-cultured with macrophages served as control PMCs. One-way ANOVA and SNK-q test were used to conduct statistics and P < .05 as significant. RESULTS: Detection of the cytokines, including IL-6, IL-10, IL-12, TGF-ß1, CCL17 and CXCL13, verified that the inducting of macrophage subtypes was successful. Compared to control, E-cadherin protein expression was significantly decreased and α-SMA protein expression increased in M1-treated PMCs (P < .05); M2a-treated PMCs had an increased gene expression of α-SMA (P < .05); E-cadherin protein and gene expression were decreased and α-SMA protein and gene expression increased significantly in M2c-treated PMCs (P < .05 or P < .01). CONCLUSIONS: EMT of PMCs is enhanced by M2c macrophage polarization; meanwhile, M1 and M2a polarization may have the effect to some extent, but not as definite as M2c.


Epithelial-Mesenchymal Transition , Peritoneal Fibrosis , Humans , Macrophages , Peritoneal Fibrosis/pathology , Peritoneum/pathology , Signal Transduction
17.
Inflammation ; 45(3): 992-1006, 2022 Jun.
Article En | MEDLINE | ID: mdl-34783942

Hyperglycemia-induced oxidative stress in podocytes exerts a major role in the pathological process of diabetic nephropathy. Tripartite motif-containing protein 32 (TRIM32) has been reported to be a key protein in the modulation of cellular apoptosis and oxidative stress under various pathological processes. However, whether TRIM32 participates in the regulation of high glucose (HG)-induced injury in podocytes has not been investigated. This work aimed to assess the possible role of TRIM32 in mediating HG-induced apoptosis, oxidative stress, and inflammatory response in podocytes in vitro. Our results showed a marked increase in TRIM32 expression in HG-exposed podocytes and the glomeruli of diabetic mice. Loss-of-function experiments showed that TRIM32 knockdown improves the viability of HG-stimulated podocytes and suppresses HG-induced apoptosis, oxidative stress, and inflammatory responses in podocytes. Further investigation revealed that TRIM32 inhibition enhances the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which is associated with the modulation of the Akt/glycogen synthase kinase-3ß (GSK-3ß) axis in podocytes following HG exposure. However, Akt suppression abrogated the TRIM32 knockdown-mediated activation of Nrf2 in HG-exposed podocytes. Nrf2 knockdown also markedly abolished the protective effects induced by TRIM32 inhibition o in HG-exposed podocytes. In summary, this work demonstrated that TRIM32 inhibition protects podocytes from HG-induced injury by potentiating Nrf2 signaling through modulation of Akt/GSK-3ß signaling. The findings reveal the potential role of TRIM32 in mediating podocyte injury during the progression of diabetic nephropathy.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Apoptosis , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Glucose/metabolism , Glucose/toxicity , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Podocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
18.
Am J Pathol ; 192(3): 441-453, 2022 03.
Article En | MEDLINE | ID: mdl-34954209

Patients with diabetes are at an increased risk for acute kidney injury (AKI) after renal ischemia/reperfusion injury (IRI). However, there is a lack preclinical models of IRI in established diabetes. The current study characterized renal IRI in mice with established diabetes and investigated potential therapies. Diabetes was induced in C57BL/6J mice by low-dose streptozotocin injection. After 7 weeks of sustained diabetes, mice underwent 13 minutes of bilateral renal ischemia and were euthanized after 24 hours of reperfusion. Age-matched, nondiabetic controls underwent the same surgical procedure. Renal IRI induced two- and sevenfold increases in plasma creatinine level in nondiabetic and diabetic mice, respectively (P < 0.001). Kidney damage, as indicated by histologic damage, tubular cell death, tubular damage markers, and inflammation, was more severe in the diabetic IRI group. The diabetic IRI group showed greater accumulation of spleen tyrosine kinase (Syk)-expressing cells, and increased c-Jun N-terminal kinase (Jnk) signaling in tubules compared to nondiabetic IRI. Prophylactic treatment with a Jnk or Syk inhibitor substantially reduced the severity of AKI in the diabetic IRI model, with differential effects on neutrophil infiltration and Jnk activation. In conclusion, established diabetes predisposed mice to renal IRI-induced AKI. Two distinct proinflammatory pathways, JNK and SYK, were identified as potential therapeutic targets for anticipated AKI in patients with diabetes.


Acute Kidney Injury , Diabetes Mellitus, Experimental , Reperfusion Injury , Acute Kidney Injury/etiology , Animals , Diabetes Mellitus, Experimental/metabolism , Female , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/pathology , Signal Transduction/physiology , Syk Kinase/metabolism
19.
Biochem Cell Biol ; 99(5): 617-628, 2021 10.
Article En | MEDLINE | ID: mdl-33831322

Autophagy dysfunction is a hallmark of type 1 diabetes. However, the precise molecular mechanism of proteinuria-induced dysfunctional autophagy remains unclear. Herein, we investigated the role of programmed cell death 4 (PDCD4) in the regulation of autophagy in the pathogenesis of diabetic kidney disease (DKD) in vivo and in vitro. RT-qPCR, immunohistochemistry (IHC), and western blotting demonstrated an upregulation of Pdcd4 mRNA and protein in streptozotocin (STZ)-induced DKD rats, as compared to the control. In addition, IHC and western blotting of a unilateral ureteral obstruction mouse model showed an upregulation of PDCD4 in the disease group, as compared to their respective controls. IHC analysis of kidney biopsy samples of human DKD patients showed an upregulation of PDCD4 compared to the control. Western blotting of the STZ-induced DKD rat tissues displayed a low microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, as compared to the control. It was found that albumin overload in cultured PTECs upregulated the expression of PDCD4 and p62 and decreased the expression of LC3-II and autophagy-related 5 (Atg5) proteins. The knockout of Pdcd4 in cultured PTECs could reduce albumin-induced dysfunctional autophagy, as evidenced by the recovery of Atg5 and LC3-II protein. The forced expression of PDCD4 could further suppress the expression of the crucial autophagy-related gene Atg5. Evidence suggests that endogenous PDCD4 promotes proteinuria-induced dysfunctional autophagy by negatively regulating Atg5. Therefore, PDCD4 may be a potential therapeutic target in DKD.


Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 5/metabolism , Kidney Tubules, Proximal/metabolism , RNA-Binding Proteins/metabolism , Adult , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Autophagy , Autophagy-Related Protein 5/genetics , Cattle , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteinuria/metabolism , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley , Serum Albumin, Bovine/metabolism , Streptozocin
20.
Chemistry ; 27(10): 3213-3228, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-32633436

Owing to their non-toxic, stable, inexpensive properties, carboxylic acids are considered as environmentally benign alternatives as coupling partners in various organic transformations. Electrochemical mediated decarboxylation of carboxylic acid has emerged as a new and efficient methodology for the construction of carbon-carbon or carbon-heteroatom bonds. Compared with transition-metal catalysis and photoredox catalysis, electro-organic decarboxylative transformations are considered as a green and sustainable protocol due to the absence of chemical oxidants and strong bases. Further, it exhibits good tolerance with various functional groups. In this Minireview, we summarize the recent advances and discoveries on the electrochemical decarboxylative transformations on C-C and C-heteroatoms bond formations.

...