Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Insect Sci ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961475

RESUMEN

Wing dimorphism in Nilaparvata lugens is controlled by the insulin-like growth factor 1 (IGF-1) signaling - Forkhead transcription factors (IIS-FoxO) pathway. However, the role of this signal in the wing development program remains largely unclear. Here, we identified 2 R-SMAD proteins, NlMAD1 and NlMAD2, in the brown planthopper (BPH) transcriptome, derived from the intrinsic transforming growth factor-ß pathway of insect wing development. Both proteins share high sequence similarity and conserved domains. Phylogenetic analysis placed them in the R-SMAD group and revealed related insect orthologs. The expression of Nlmad1 was elevated in the late instar stages of the macropterous BPH strain. Nlmad1 knockdown in nymphs results in malformed wings and reduced wing size in adults, which affects the forewing membrane. By contrast, Nlmad2 expression was relatively consistent across BPH strains and different developmental stages. Nlmad2 knockdown had a milder effect on wing morphology and mainly affected forewing veins and cuticle thickness in the brachypterous strain. NlMAD1 functions downstream of the IIS-FoxO pathway by mediating the FoxO-regulated vestigial transcription and wing morph switching. Inhibiting Nlmad1 partially reversed the long-winged phenotype caused by NlFoxO knockdown. These findings indicate that NlMAD1 and NlMAD2 play distinct roles in regulating wing development and morph differentiation in BPH. Generally, NlMAD1 is a key mediator of the IIS-FoxO pathway in wing morph switching.

2.
Food Chem ; 459: 140369, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39002338

RESUMEN

The improper use of organophosphate pesticides (OPs) can lead to residue posing a serious threat to human health and environment. Therefore, the development of a simple, portable, and sensitive detection method is crucial. Herein, a bioenzyme-nanozyme-chromogen all-in-one paper-based sensor was synthesized. Initially, the Ce/Zr-MOF with peroxidase-like activity was grown on filter paper (FP) using in-situ solvent thermal method, resulting in Ce/Zr-MOF@FP. Subsequently, the AChE-ChO-TMB system was immobilized onto Ce/Zr-MOF@FP using biocompatible gelatin, which enhanced cascade catalysis efficiency through the proximity effect. Based on the inhibition principle of OPs on AChE, we integrated this sensor with Python-based image recognition algorithm to achieve detection of OPs. Using 2,2-dichlorovinyl dimethyl phosphate (DDVP) as a model of OPs, it has good detection performance with a detection limit of 0.32 ng mL-1 and a recovery rate range of 95-107%. The potential for on-site detection of DDVP residues in vegetables and fruit samples is highly promising.

3.
Physiol Plant ; 176(4): e14434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981863

RESUMEN

Anthocyanin is a type of plant secondary metabolite beneficial to human health. The anthocyanin content of vegetable and fruit crops signifies their nutritional quality. However, the molecular mechanism of anthocyanin accumulation, especially tissue-specific accumulation, in Caitai, as well as in other Brassica rapa varieties, remains elusive. In the present study, taking advantage of three kinds of Caitai cultivars with diverse colour traits between leaves and stems, we conducted a comparative transcriptome analysis and identified the molecular pathway of anthocyanin biosynthesis in Caitai leaves and stems, respectively. Our further investigations demonstrate that bHLH42, which is robustly induced by MeJA, closely correlates with tissue-specific accumulation of anthocyanins in Caitai; bHLH42 upregulates the expression of flavonoid/anthocyanin biosynthetic pathway genes to activate anthocyanin biosynthesis pathway, importantly, overexpression of bHLH42 significantly improves the anthocyanin content of Caitai. Our analysis convincingly suggests that bHLH42 induced by jasmonic acid signalling plays a crucial role in tissue-specific accumulation of anthocyanins in Caitai.


Asunto(s)
Acetatos , Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclopentanos , Flavonoides , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Antocianinas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Flavonoides/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo
4.
Biomed Pharmacother ; 176: 116919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876053

RESUMEN

Albumin has a variety of biological functions, such as immunomodulatory and antioxidant activity, which depends largely on its thiol activity. However, in clinical trials, the treatment of albumin by injection of commercial human serum albumin (HSA) did not achieve the desired results. Here, we constructed reduced modified albumin (SH-Alb) for in vivo and in vitro experiments to investigate the reasons why HSA did not achieve the expected effects. SH-Alb was found to delay the progression of liver fibrosis in mice by alleviating liver inflammation and oxidative stress. Although R-Alb also has some of the above roles, the effect of SH-Alb is more remarkable. Mechanism studies have shown that SH-Alb reduces the release of pro-inflammatory and pro-fibrotic cytokine through the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, SH-Alb deacetylates SOD2, a key enzyme of mitochondrial reactive oxygen species (ROS) production, by promoting the expression of SIRT3, thereby reducing the accumulation of ROS. Finally, macrophages altered by R-Alb or SH-Alb can inhibit the activation of hepatic stellate cells and endothelial cells, further delaying the progression of liver fibrosis. These results indicate that SH-Alb can remodel the phenotype of macrophages, thereby affecting the intrahepatic microenvironment and delaying the process of liver fibrosis. It provides a good foundation for the application of albumin in clinical treatment.


Asunto(s)
Cirrosis Hepática , Macrófagos , Sirtuina 3 , Superóxido Dismutasa , Animales , Humanos , Masculino , Ratones , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo
5.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750259

RESUMEN

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Asunto(s)
Glucólisis , Fosfoglicerato Mutasa , Hormonas Tiroideas , Humanos , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosforilación , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Ratones , Proteínas de Unión a Hormona Tiroide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
6.
Inflammopharmacology ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761314

RESUMEN

Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.

7.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38565142

RESUMEN

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Asunto(s)
Linfocitos T CD8-positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Animales , Humanos , Ratones , Línea Celular Tumoral , Ratones Endogámicos C57BL , Estrés del Retículo Endoplásmico , Factor de Transcripción Activador 4/metabolismo , Transducción de Señal , Femenino , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Factor de Transcripción STAT3/metabolismo
8.
Anal Chim Acta ; 1296: 342307, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401927

RESUMEN

Toluene, a volatile organic compound, may have adverse effects on the nervous and digestive system when inhaled over an extended period. The assessment of environmental toluene exposure can be effectively conducted by detecting hippuric acid (HA), a toluene metabolite. In this investigation, a molecularly imprinted electrochemical sensor was developed for HA detection, utilizing the synergistic effects of reduced graphene oxide (RGO) and a bimetallic organic skeleton known as CoNi-MOF. Initially, graphene oxide (GO) was synthesized using a modified Hummers' method, and RGO with better conductivity was achieved through reduction with ascorbic acid (AA). Subsequently, CoNi-MOF was introduced to enhance the material's electron transport capabilities further. The molecularly imprinted membrane was then prepared via electropolymerization to enable selective HA recognition. Under optimal conditions, the synthesized sensor exhibited accurate HA detection within a concentration range of 2-800 nM, with a detection limit of 0.97 nM. The sensor's selectivity was assessed using a selectivity coefficient, yielding an imprinting factor of 6.53. The method was successfully applied to the quantification of HA in urine, demonstrating a favorable recovery rate of 93.4%-103.9%. In conclusion, this study presents a practical platform for the detection of human metabolite detection.


Asunto(s)
Caracol Conus , Grafito , Hipuratos , Impresión Molecular , Nanocompuestos , Animales , Humanos , Límite de Detección , Impresión Molecular/métodos , Grafito/química , Nanocompuestos/química , Tolueno , Técnicas Electroquímicas/métodos , Electrodos
9.
FASEB J ; 38(4): e23487, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38345808

RESUMEN

Increasing attention is being paid to the mechanistic investigation of exercise-associated chronic inflammatory disease improvement. Ulcerative colitis (UC) is one type of chronic inflammatory bowel disease with increasing incidence and prevalence worldwide. It is known that regular moderate aerobic exercise (RMAE) reduces the incidence or risk of UC, and attenuates disease progression in UC patients. However, the mechanisms of this RMAE's benefit are still under investigation. Here, we revealed that ß-hydroxybutyrate (ß-HB), a metabolite upon prolonged aerobic exercise, could contribute to RMAE preconditioning in retarding dextran sulfate sodium (DSS)-induced mouse colitis. When blocking ß-HB production, RMAE preconditioning-induced colitis amelioration was compromised, whereas supplementation of ß-HB significantly rescued impaired ß-HB production-associated defects. Meanwhile, we found that RMAE preconditioning significantly caused decreased colonic Th17/Treg ratio, which is considered to be important for colitis mitigation; and the downregulated Th17/Treg ratio was associated with ß-HB. We further demonstrated that ß-HB can directly promote the differentiation of Treg cell rather than inhibit Th17 cell generation. Furthermore, ß-HB increased forkhead box protein P3 (Foxp3) expression, the core transcriptional factor for Treg cell, by enhancing histone H3 acetylation in the promoter and conserved noncoding sequences of the Foxp3 locus. In addition, fatty acid oxidation, the key metabolic pathway required for Treg cell differentiation, was enhanced by ß-HB treatment. Lastly, administration of ß-HB without exercise significantly boosted colonic Treg cell and alleviated colitis in mice. Together, we unveiled a previously unappreciated role for exercise metabolite ß-HB in the promotion of Treg cell generation and RMAE preconditioning-associated colitis attenuation.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Ratones , Animales , Linfocitos T Reguladores/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Th17/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
10.
Food Chem ; 446: 138843, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422643

RESUMEN

Heavy metals cause serious toxic threats to both environment and human health. The multivariate, instrument-free, portable, and rapid detection strategy is crucial for determination of heavy metals. Herein, aggregation-induced emission (AIE) featured carbon dots (SN-CDs) were fabricated hydrothermally by optimizing co-doping precursors. With bright yellow emission at 560 nm, the SN-CDs were utilized for multivariate sensing Cu2+, Hg2+ and bovine serum albumin (BSA) based on AIE behavior and static quenching effect, with detection limits of 0.46 µmol·L-1, 25.8 nmol·L-1 and 1.52 µmol·L-1. A portable smartphone platform was constructed to enable portable, prompt, and sensitive analysis for Cu2+, Hg2+, and BSA via different strategies in real water and food samples with satisfied recovery. Moreover, a logic gate circuit was designed to provide the possibilities for utilization of intelligent facility. The proposed AIE SN-CDs possessing great contribution in preferable sensing performance, present promising prospects in real-time monitoring of environment and food safety.


Asunto(s)
Mercurio , Puntos Cuánticos , Humanos , Albúmina Sérica Bovina , Teléfono Inteligente , Carbono , Inocuidad de los Alimentos , Colorantes Fluorescentes , Espectrometría de Fluorescencia
11.
Food Chem ; 445: 138794, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394907

RESUMEN

Determination of dopamine (DA) is crucial for its intimate relationship with clinical trials and biological environment. Herein, Fe, N co-doped carbon dots (AFC-CDs) were fabricated by optimizing precursors and reaction conditions for fluorimetric/colorimetric dual-mode sensing of DA. With synergistic influence of Förster resonance energy transfer and static quenching effect, DA significantly quenched the blue luminescence of AFC-CDs at 442 nm, the production of recognizable tan-brown complex caused evident colorimetric response, achieved the dual-mode fluorimetric/colorimetric sensing for DA. The excellent selectivity and satisfied sensitivity can be confirmed with the limit of detection at 0.29 µM and 2.31 µM via fluorimetric/colorimetric mode respectively. The reliability and practicability were proved by recovery of 94.81-101.61% in real samples. Notably, the proposed electron transfer way between AFC-CDs and DA was hypothesized logically, indicated dual-mode probe provided a promising platform for the sensing of trace DA, and could be expanded in environment and food safety.


Asunto(s)
Hierro , Puntos Cuánticos , Colorimetría , Dopamina , Reproducibilidad de los Resultados , Carbono , Nitrógeno
12.
Adv Sci (Weinh) ; 11(9): e2306955, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084450

RESUMEN

The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.


Asunto(s)
Neoplasias Gástricas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Neoplasias Gástricas/diagnóstico , Glicosilación , Biomarcadores , Polisacáridos/química
13.
J Chromatogr A ; 1714: 464579, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38113580

RESUMEN

This study focuses on the extraction of ellagic acid (EA), a valued phenolic compound, from agricultural waste chestnut shell samples. A novel approach is introduced using a combination of boronic acid-modified molecularly imprinted polymer (ZIF@B@MIP) and a nanocomposite of graphene oxide-coated silver nanoparticles (GO@Ag@GSH) to enhance EA enrichment. ZIF@B@MIP precisely captured EA through boronate affinity-based molecular imprinting recognition. ZIF@B@MIP employs boronate affinity-based molecular imprinting recognition to precisely capture EA, while GO@Ag@GSH provides ample adsorption sites. The synergistic effect of ZIF@B@MIP and GO@Ag@GSH demonstrates excellent enrichment capability and selectivity for EA. High-performance liquid chromatography (HPLC) is employed for sensitive EA detection, achieving a maximum adsorption capacity of 46.25 mg g-1 and an imprinting factor of 3.01. The adsorption capacity to different structural analogue was investigated, and the selectivity coefficient was used to evaluate the selectivity, and its value was 1.16-3.01. The method successfully enriches EA in chestnut shell samples with a recovery rate of 95.6 %-110.1 %. This research presents an innovative approach for effective phenolic components enrichment from natural resources for pharmaceutical and biochemical applications.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Ácidos Borónicos/química , Plata , Ácido Elágico , Polímeros/química , Fenoles , Adsorción
14.
Mol Med Rep ; 29(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099350

RESUMEN

Human serum albumins (HSAs) are synthesized in the liver and are the most abundant proteins in plasma of healthy human. They play an important role in the pathophysiological processes of the liver and even the whole organism. Previous studies have mainly focused on the regulation of HSAs' expression. However, with the progress of research in recent years, it has been found that the content of circulating albumin cannot fully reflect the biological function of albumin itself. Given the aforementioned fact, the concept of serum 'effective albumin concentration' has been proposed. It refers to the content of albumin that is structurally and functionally intact. Alterations in the molecular structure and function of albumin have been reported in a variety of diseases, including liver disease. Moreover, these changes have been verified to affect the progression of oxidative stress­related diseases. However, the link between albumin structure and function has not been fully elaborated, and the mechanisms by which different forms of albumin affect disease also need to be further investigated. In this context, the present review mainly expounded the biological characteristics and functions of albumin, summarized the different types of post­translational modification of albumin, and discussed their functional changes and possible mechanisms in non­alcoholic fatty liver disease, alcoholic hepatitis, viral hepatitis and different stages of cirrhosis. This will help to improve understanding of the role of albumin in disease development and provide a more comprehensive physiological basis for it in disease treatment.


Asunto(s)
Albúminas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Albúminas/metabolismo , Cirrosis Hepática/metabolismo , Albúmina Sérica , Albúmina Sérica Humana
15.
J Mol Med (Berl) ; 102(2): 257-272, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141114

RESUMEN

Liver injury is closely associated with macrophage activation following HBV infection. Our previous study showed that only HBeAg, but not HBsAg and HBcAg, stably enhances inflammatory cytokine production in macrophages. And we also indicated that HBeAg could induce macrophage activation via TLR2 and thus aggravate the progression of liver fibrosis. However, the specific molecular mechanism of HBeAg in macrophage activation is not clear. We screened significantly overexpressed RGS16 from RNASeq results of HBeAg-stimulated macrophages and validated them with cellular assays, GSE83148 microarray dataset, and in clinical samples. Meanwhile, small interference, plasmid, and lentivirus transfection assays were used to establish cell models for knockdown and overexpression of RGS16, and q-PCR, ELISA, Transwell, and CCK-8 assays were used to analyze the role of RGS16 in HBeAg-induced macrophage activation. In addition, the upstream and downstream mechanisms of RGS16 in HBeAg-treated macrophage activation were explored using inhibitors, phostag gels, and RGS16 phosphorylation mutant plasmids. Finally, the effect of RGS16 on hepatic inflammation in murine tissues was evaluated by H&E staining, liver enzyme assay and immunofluorescence. RGS16 was significantly upregulated in HBeAg-induced macrophage activation, and its expression was enhanced with increasing HBeAg content and treatment time. Functional experiments showed that overexpression of RGS16 promoted the production of inflammatory factors TNF-α and IL-6 and boosted macrophage proliferation and migration, while knockdown of RGS16 exhibited the opposite effect. Mechanistically, we discovered that RGS16 is regulated by the TLR2/P38/STAT5 signaling pathway. Meanwhile, RGS16 enhanced ERK phosphorylation via its own Tyr168 phosphorylation to contribute to macrophage activation, thereby accelerating liver injury. Finally, in mice, overexpression of RGS16 markedly strengthened liver inflammation. HBeAg upregulates RGS16 expression through the TLR2-P38-STAT5 axis, and the upregulated expression of RGS16 enhances macrophage activation and accelerates liver injury by promoting ERK phosphorylation. In this process, phosphorylation of Tyr168 is necessary for RGS16 to function. KEY MESSAGES: RGS16 boosted HBeAg-induced macrophage inflammation, proliferation, and migration. Tyr168 phosphorylation of RGS16 affected by ERK promoted macrophage activation. HBeAg upregulated the expression of RGS16 through TLR2/P38/STAT5 signal pathway. RGS16 promoted liver injury by regulating macrophage functions in mouse model.


Asunto(s)
Antígenos e de la Hepatitis B , Sistema de Señalización de MAP Quinasas , Animales , Ratones , Antígenos e de la Hepatitis B/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Activación de Macrófagos , Fosforilación , Factor de Transcripción STAT5/metabolismo , Receptor Toll-Like 2
16.
Plants (Basel) ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960096

RESUMEN

Salt stress is a major abiotic stressor that can severely limit plant growth, distribution, and crop yield. DNA-binding with one finger (Dof) is a plant-specific transcription factor that plays a crucial role in plant growth, development, and stress response. In this study, the function of a Dof transcription factor, GhDof1.7, was investigated in upland cotton. The GhDof1.7 gene has a coding sequence length of 759 base pairs, encoding 252 amino acids, and is mainly expressed in roots, stems, leaves, and inflorescences. Salt and abscisic acid (ABA) treatments significantly induced the expression of GhDof1.7. The presence of GhDof1.7 in Arabidopsis may have resulted in potential improvements in salt tolerance, as suggested by a decrease in H2O2 content and an increase in catalase (CAT) and superoxide dismutase (SOD) activities. The GhDof1.7 protein was found to interact with GhCAR4 (C2-domain ABA-related 4), and the silencing of either GhDof1.7 or GhCAR4 resulted in reduced salt tolerance in cotton plants. These findings demonstrate that GhDof1.7 plays a crucial role in improving the salt tolerance of upland cotton and provide insight into the regulation of abiotic stress response by Dof transcription factors.

17.
Biomed Pharmacother ; 168: 115675, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812887

RESUMEN

Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1ß, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.


Asunto(s)
Neuralgia , Fármacos Neuroprotectores , Animales , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Hiperalgesia/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Nervio Ciático/lesiones , Médula Espinal/metabolismo
18.
J Biol Chem ; 299(11): 105308, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778730

RESUMEN

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Asunto(s)
ADN Glicosilasas , FN-kappa B , Animales , ADN/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Mamíferos/metabolismo , Mitógenos , FN-kappa B/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Humanos , Ratones , Línea Celular , Ratones Noqueados
19.
J Mater Chem B ; 11(37): 8933-8942, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37682063

RESUMEN

The inefficient treatment using protein-based nanovaccines is largely attributed to their inadequate immunogenicity. Herein, we developed a novel fluoropolymer (PF) via ring-opening polymerization and constructed a fluoropolymer-based nanovaccine for tumor immunotherapy. Due to the existence of fluoroalkyl chains, PF not only played a crucial role in tumor antigen delivery but also exhibited a remarkable adjuvant effect in enhancing the immunogenicity of nanovaccines. The nanovaccines formed by mixing PF with a model antigen ovalbumin (OVA) enhanced the uptake of antigen proteins by dendritic cells (DCs) and promoted the maturation and antigen presentation of DCs. Compared with free OVA, PF/OVA showed better efficacy in both pre-cancer prevention and tumor treatment. Furthermore, the proportion of CD4+ T and CD8+ T cells was significantly increased in lymph nodes and tumors of mice immunized with PF/OVA. Additionally, there was a great enhancement in the levels of key anti-tumor cytokines (TNF-α and IFN-γ) in the serum of the PF/OVA immunized mice. Our research has shown that fluoropolymer PF applied as a protein vector and adjuvant has great potential for the development of nanovaccines with robust immunogenicity.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Polímeros de Fluorocarbono , Adyuvantes Inmunológicos , Inmunoterapia , Neoplasias/metabolismo , Antígenos de Neoplasias
20.
J Nanobiotechnology ; 21(1): 324, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679769

RESUMEN

BACKGROUND: Targeting EBV-proteins with mRNA vaccines is a promising way to treat EBV-related tumors like nasopharyngeal carcinoma (NPC). We assume that it may sensitize tumors to immune checkpoint inhibitors. RESULTS: We developed an LMP2-mRNA lipid nanoparticle (C2@mLMP2) that can be delivered to tumor-draining lymph nodes. C2@mLMP2 exhibited high transfection efficiency and lysosomal escape ability and induced an increased proportion of CD8 + central memory T cells and CD8 + effective memory T cells in the spleen of the mice model. A strong synergistic anti-tumor effect of C2@mLMP2 in combination with αPD-1 was observed in tumor-bearing mice. The mechanism was identified to be associated with a reverse of CD8 + T cell exhaustion in the tumor microenvironment. The pathological analysis further proved the safety of the vaccine and the combined therapy. CONCLUSIONS: This is the first study proving the synergistic effect of the EBV-mRNA vaccine and PD-1 inhibitors for EBV-related tumors. This study provides theoretical evidence for further clinical trials that may expand the application scenario and efficacy of immunotherapy in NPC.


Asunto(s)
Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Animales , Ratones , Herpesvirus Humano 4/genética , Agotamiento de Células T , Inhibidores de Puntos de Control Inmunológico/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , ARN Mensajero/genética , Neoplasias Nasofaríngeas/tratamiento farmacológico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...