Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
J Thorac Dis ; 16(6): 3740-3752, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38983149

RESUMEN

Background: Due to the widespread use of computed tomography (CT) screening and advances in diagnostic techniques, an increasing number of patients with multiple pulmonary nodules are being detected and pathologically diagnosed as synchronous multiple primary lung cancers (sMPLC). It has become a new challenge to treat multiple pulmonary nodules and obtain a favorable prognosis while minimizing the perioperative risk for patients. The purpose of this study was to summarize the preliminary experience with a hybrid surgery combining pulmonary resection and ablation for the treatment of sMPLC and to discuss the feasibility of this novel procedure with a literature review. Methods: This is a retrospective non-randomized controlled study. From January 1, 2022 to July 1, 2023, four patients underwent hybrid surgery combining thoracoscopic pulmonary resection and percutaneous pulmonary ablation for multiple pulmonary nodules. Patients were followed up at 3, 6 and 12 months postoperatively and the last follow-up was on November 30, 2023. Clinical characteristics, perioperative outcomes, pulmonary function recovery and oncologic prognosis were recorded. Meanwhile we did a literature review of studies on hybridized pulmonary surgery for the treatment of multiple pulmonary nodules. Results: All the four patients were female, aged 52 to 70 years, and had no severe cardiopulmonary dysfunction on preoperative examination. Hybrid surgery of simultaneous pulmonary resection and ablation were performed in these patients to treat 2 to 4 pulmonary nodules, assisted by intraoperative real-time guide of C-arm X-ray machine. The operation time was from 155 to 240 minutes, and intraoperative blood loss was from 50 to 200 mL. Postoperative hospital stay was 2 to 7 days, thoracic drainage duration was 2 to 6 days, and pleural drainage volume was 300-1,770 mL. One patient presented with a bronchopleural fistula due to pulmonary ablation; the fistula was identified and sutured during thoracoscopic surgery and the patient recovered well. No postoperative 90-day complications occurred. After 3 months postoperatively, performance status scores for these patients recovered to 80 to 100. No tumor recurrence or metastasis was detected during the follow-up period. Conclusions: Hybrid procedures combining minimally invasive pulmonary resection with ablation are particularly suitable for the simultaneous treatment of sMPLC. Patients had less loss of pulmonary function, fewer perioperative complications, and favorable oncologic prognosis. Hybrid surgery is expected to be a better treatment option for patients with sMPLC.

2.
Int J Biol Macromol ; 275(Pt 1): 133594, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960258

RESUMEN

Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-ß (TGF-ß) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-ß signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-ß signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.

3.
Heart Lung Circ ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960752

RESUMEN

BACKGROUND: This meta-analysis aimed to evaluate the effects of intracoronary (IC) low-dose tirofiban versus intravenous (IV) administration on clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: All published randomised controlled trials (RCTs) comparing the effects of IC low-dose tirofiban (a bolus of ≤10 ug/kg) versus IV administration in patients with STEMI were identified by searching PubMed, EMBASE, Cochrane Library, and ISI Web of Science from inception to June 2023, with no language restriction. The risk ratio (RR) with 95% confidence intervals (CI) and the weighted mean difference (WMD) with 95% CI were calculated. RESULTS: Eleven RCTs involving 1,802 patients were included. Compared with the IV group, IC low-dose tirofiban was associated with improved major adverse cardiac events rate (RR 0.595, 95% CI 0.442-0.802; p=0.001), left ventricular ejection fraction (WMD 1.982, 95% CI 0.565-3.398; p=0.006), thrombolysis in myocardial infarction (TIMI) flow grade (RR 1.065, 95% CI 1.004-1.131; p=0.037), and TIMI myocardial perfusion grade (RR 1.194, 95% CI 1.001-1.425; p=0.049). The two groups had no significant difference in bleeding events (RR 0.952, 95% CI 0.709-1.279; p=0.745). CONCLUSIONS: Intracoronary low-dose tirofiban administration may be a safe and effective alternative to IV administration in STEMI patients.

4.
J Med Internet Res ; 26: e52992, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954461

RESUMEN

BACKGROUND: In the era of the internet, individuals have increasingly accustomed themselves to gathering necessary information and expressing their opinions on public web-based platforms. The health care sector is no exception, as these comments, to a certain extent, influence people's health care decisions. During the onset of the COVID-19 pandemic, how the medical experience of Chinese patients and their evaluations of hospitals have changed remains to be studied. Therefore, we plan to collect patient medical visit data from the internet to reflect the current status of medical relationships under specific circumstances. OBJECTIVE: This study aims to explore the differences in patient comments across various stages (during, before, and after) of the COVID-19 pandemic, as well as among different types of hospitals (children's hospitals, maternity hospitals, and tumor hospitals). Additionally, by leveraging ChatGPT (OpenAI), the study categorizes the elements of negative hospital evaluations. An analysis is conducted on the acquired data, and potential solutions that could improve patient satisfaction are proposed. This study is intended to assist hospital managers in providing a better experience for patients who are seeking care amid an emergent public health crisis. METHODS: Selecting the top 50 comprehensive hospitals nationwide and the top specialized hospitals (children's hospitals, tumor hospitals, and maternity hospitals), we collected patient reviews from these hospitals on the Dianping website. Using ChatGPT, we classified the content of negative reviews. Additionally, we conducted statistical analysis using SPSS (IBM Corp) to examine the scoring and composition of negative evaluations. RESULTS: A total of 30,317 pieces of effective comment information were collected from January 1, 2018, to August 15, 2023, including 7696 pieces of negative comment information. Manual inspection results indicated that ChatGPT had an accuracy rate of 92.05%. The F1-score was 0.914. The analysis of this data revealed a significant correlation between the comments and ratings received by hospitals during the pandemic. Overall, there was a significant increase in average comment scores during the outbreak (P<.001). Furthermore, there were notable differences in the composition of negative comments among different types of hospitals (P<.001). Children's hospitals received sensitive feedback regarding waiting times and treatment effectiveness, while patients at maternity hospitals showed a greater concern for the attitude of health care providers. Patients at tumor hospitals expressed a desire for timely examinations and treatments, especially during the pandemic period. CONCLUSIONS: The COVID-19 pandemic had some association with patient comment scores. There were variations in the scores and content of comments among different types of specialized hospitals. Using ChatGPT to analyze patient comment content represents an innovative approach for statistically assessing factors contributing to patient dissatisfaction. The findings of this study could provide valuable insights for hospital administrators to foster more harmonious physician-patient relationships and enhance hospital performance during public health emergencies.


Asunto(s)
COVID-19 , Hospitales , Internet , Pandemias , COVID-19/epidemiología , Humanos , China/epidemiología , Satisfacción del Paciente/estadística & datos numéricos , SARS-CoV-2 , Investigación Empírica
5.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951640

RESUMEN

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Asunto(s)
Membrana Celular , Integrina beta3 , Ratones Noqueados , Regeneración , Animales , Ratones , Integrina beta3/metabolismo , Integrina beta3/genética , Membrana Celular/metabolismo , Miocitos Cardíacos/metabolismo , Masculino , Plasmalógenos/metabolismo , Transducción de Señal , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Lesiones Cardíacas/genética , Proliferación Celular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
6.
World J Clin Cases ; 12(16): 2738-2744, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899293

RESUMEN

BACKGROUND: Complex and high-risk surgical complications pose pressing challenges in the clinical implementation and advancement of endoscopic full-thickness resection (EFTR). Successful perforation repair under endoscopy, thereby avoiding surgical intervention and postoperative complications such as peritonitis, are pivotal for effective EFTR. AIM: To investigate the effectiveness and safety of EFTR assisted by distal serosal inversion under floss traction in gastric submucosal tumors. METHODS: A retrospective analysis of patients with gastric and duodenal submucosal tumors treated with EFTR assisted by the distal serosa inversion under dental floss traction from January 2023 to January 2024 was conducted. The total operation time, tumor dissection time, wound closure time, intraoperative bleeding volume, length of hospital stay and incidence of complications were analyzed. RESULTS: There were 93 patients, aged 55.1 ± 12.1 years. Complete tumor resection was achieved in all cases, resulting in a 100% success rate. The average total operation time was 67.4 ± 27.0 min, with tumor dissection taking 43.6 ± 20.4 min. Wound closure times varied, with gastric body closure time of 24.5 ± 14.1 min and gastric fundus closure time of 16.6 ± 8.7 min, showing a significant difference (P < 0.05). Intraoperative blood loss was 2.3 ± 4.0 mL, and average length of hospital stay was 5.7 ± 1.9 d. There was no secondary perforation after suturing in all cases. The incidence of delayed bleeding was 2.2%, and the incidence of abdominal infection was 3.2%. No patient required other surgical intervention during and after the operation. CONCLUSION: Distal serosal inversion under dental-floss-assisted EFTR significantly reduced wound closure time and intraoperative blood loss, making it a viable approach for gastric submucosal tumors.

7.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38934866

RESUMEN

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Asunto(s)
Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Modelos Animales de Enfermedad , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Humanos , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Células HEK293 , Porcinos , Reprogramación Celular , Proteínas de Unión a Hormona Tiroide , Regeneración , Unión Proteica , Sus scrofa , Remodelación Ventricular/fisiología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Metabolismo Energético/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Reprogramación Metabólica
8.
Biochem Pharmacol ; 225: 116327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823457

RESUMEN

With the progressive aging of society, there is an increasing prevalence of age-related diseases that pose a threat to the elderly's quality of life. Adipose tissue, a vital energy reservoir with endocrine functions, is one of the most vulnerable tissues in aging, which in turn influences systematic aging process, including metabolic dysfunction. However, the underlying mechanism is still poorly understood. In this study, we found that NRG4, a novel adipokine, is obviously decreased in adipocyte tissues and serums during aging. Moreover, delivered recombinant NRG4 protein (rNRG4) into aged mice can ameliorate age-associated insulin resistance, glucose disorders and other metabolic disfunction. In addition, rNRG4 treatment alleviates age-associated hepatic steatosis and sarcopenia, accompanied with altered gene signatures. Together, these results indicate that NRG4 plays a key role in the aging process and is a therapeutic target for the treatment of age-associated metabolic dysfunction.


Asunto(s)
Adipocitos , Envejecimiento , Ratones Endogámicos C57BL , Neurregulinas , Animales , Ratones , Neurregulinas/metabolismo , Neurregulinas/genética , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Envejecimiento/metabolismo , Masculino , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Sarcopenia/metabolismo , Sarcopenia/prevención & control , Resistencia a la Insulina/fisiología
9.
BMC Public Health ; 24(1): 1551, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853236

RESUMEN

BACKGROUND: Previous researches examining the impact of dietary nutrition on mortality risk have mainly focused on individual nutrients, however the interaction of these nutrients has not been considered. The purpose of this study was to identify of nutrient deficiencies patterns and analyze their potential impact on mortality risk in older adults with hypertension. METHODS: We included participants from the National Health and Nutrition Examination Survey (NHANES) study. The latent class analysis (LCA) was applied to uncover specific malnutrition profiles within the sample. Risk of the end points across the phenogroups was compared using Kaplan-Meier analysis and Cox proportional hazard regression model. Multinomial logistic regression was used to determine the influencing factors of specific malnutrition profiles. RESULTS: A total of 6924 participants aged 60 years or older with hypertension from NHANES 2003-2014 was followed until December 31, 2019 with a median follow-up of 8.7 years. Various nutrients included vitamin A, vitamin B1, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K, fiber, folate, calcium, magnesium, zinc, copper, iron, and selenium, and LCA revealed 4 classes of malnutrition. Regarding all-cause mortality, "Nutrient Deprived" group showed the strongest hazard ratio (1.42 from 1.19 to 1.70) compared with "Adequate Nutrient" group, followed by "Inadequate Nutrient" group (1.29 from 1.10 to 1.50), and "Low Fiber, Magnesium, and Vit E" group (1.17 from 1.02 to 1.35). For cardiovascular mortality, "Nutrient Deprived" group showed the strongest hazard ratio (1.61 from 1.19 to 2.16) compared with "Adequate Nutrient" group, followed by "Low Fiber, Magnesium, and Vit E" group (1.51 from 1.04 to 2.20), and "Inadequate Nutrient" group (1.37 from 1.03 to 1.83). CONCLUSIONS: The study revealed a significant association between nutrients deficiency patterns and the risk of all-cause and cardiovascular mortality in older adults with hypertension. The findings suggested that nutrients deficiency pattern may be an important risk factor for mortality in older adults with hypertension.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Análisis de Clases Latentes , Encuestas Nutricionales , Humanos , Femenino , Masculino , Anciano , Hipertensión/mortalidad , Enfermedades Cardiovasculares/mortalidad , Persona de Mediana Edad , Desnutrición/mortalidad , Desnutrición/epidemiología , Factores de Riesgo , Causas de Muerte , Anciano de 80 o más Años , Modelos de Riesgos Proporcionales
10.
Front Vet Sci ; 11: 1359421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840631

RESUMEN

Porcine circovirus disease (PCV) causes substantial economic losses in the pig industry, primarily from porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3). Novel vaccines are necessary to prevent and control PCV infections. PCV coat proteins are crucial for eliciting immunogenic proteins that induce the production of antibodies and immune responses. A vaccine platform utilizing Semliki Forest virus RNA replicons expressing vesicular stomatitis virus glycoprotein (VSV-G), was recently developed. This platform generates virus-like vesicles (VLVs) containing VSV-G exclusively, excluding other viral structural proteins. In our study, we developed a novel virus-like vesicle vaccine by constructing recombinant virus-like vesicles (rVLVs) that also express EGFP. These rVLVs were created using the RNA replicon of Venezuelan equine encephalomyelitis (VEEV) and New Jersey serotype VSV-G. The rVLVs underwent characterization and safety evaluation in vitro. Subsequently, rVLVs expressing PCV2d-Cap and PCV3-Cap proteins were constructed. Immunization of C57 mice with these rVLVs led to a significant increase in anti-porcine circovirus type 2 and type 3 capsid protein antibodies in mouse serum. Additionally, a cellular immune response was induced, as evidenced by high production of IFN-γ and IL-4 cytokines. Overall, this study demonstrates the feasibility of developing a novel porcine circovirus disease vaccine based on rVLVs.

11.
Harmful Algae ; 135: 102630, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38830708

RESUMEN

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Asunto(s)
Dinoflagelados , Agua Dulce , Especies Introducidas , Filogenia , Navíos , Dinoflagelados/fisiología , Dinoflagelados/genética , Dinoflagelados/clasificación , Agua Dulce/parasitología , China , Ecosistema , Sedimentos Geológicos , Floraciones de Algas Nocivas
12.
Anal Chem ; 96(25): 10111-10115, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869290

RESUMEN

The Si window is the most widely used internal reflection element (IRE) for electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), yet local chemical etching on Si by concentrated OH- anions bottlenecks the reliable application of this method in strong alkaline electrolytes. In this report, atomic layer deposition of a 25 nm nonconductive TiO2 barrier layer on the reflecting plane of a Si prism is demonstrated to address this challenge. In situ ATR-SEIRAS measurement on a Au film electrode with the Si/TiO2 composite IRE in 1 M NaOH reveals reversible global spectral features without spectral distortion at 1000-1300 cm-1, in stark contrast to those obtained with a bare Si window. By applying this structured ATR-SEIRAS, ethanol electrooxidation on a Pt/C catalyst in 1 and 5 M NaOH is explored, manifesting that such high pH values prevent the adsorption of as-formed acetate in the C2 pathway but not that of CO intermediate in the C1 pathway.

13.
Zool Res ; 45(3): 633-647, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766746

RESUMEN

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Asunto(s)
Nocicepción , Núcleos Parabraquiales , Animales , Núcleos Parabraquiales/fisiología , Ratones , Nocicepción/fisiología , Neuronas/fisiología , Dolor/fisiopatología , Masculino , Conducta Animal/fisiología
14.
Ultrason Sonochem ; 107: 106927, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820934

RESUMEN

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.


Asunto(s)
Bombyx , Pupa , Agua , Animales , Pupa/microbiología , Agua/química , Bombyx/química , Ondas Ultrasónicas , Fenómenos Químicos , Antioxidantes/química , Antioxidantes/farmacología , Biodiversidad
15.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789039

RESUMEN

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Asunto(s)
Calmodulina , Endosomas , Inmunidad Innata , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Animales , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Calmodulina/metabolismo , Calmodulina/genética , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Células Vero , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo
16.
Circ Res ; 135(1): 60-75, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770652

RESUMEN

BACKGROUND: Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS: Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS: Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS: 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.


Asunto(s)
Hipertensión Pulmonar , Imagenología Tridimensional , Ratones Endogámicos C57BL , Animales , Humanos , Ratones , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Masculino , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Microvasos/fisiopatología , Microvasos/diagnóstico por imagen , Microvasos/patología , Remodelación Vascular , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha , Remodelación Ventricular , Modelos Animales de Enfermedad , Miocitos Cardíacos/patología
17.
Signal Transduct Target Ther ; 9(1): 131, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740785

RESUMEN

Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Epítopos , Inmunoglobulina M , SARS-CoV-2 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Animales , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Inmunoglobulina M/inmunología , Inmunoglobulina M/genética , Ratones , Dominios Proteicos , Microscopía por Crioelectrón
18.
J Am Chem Soc ; 146(22): 15473-15478, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38782032

RESUMEN

The synthesis and characterization of a series of polyantimony anionic clusters are reported. The products [(NbCp)2Sb10]2-, [MSb13]3- (M = Ru/Fe), and [MSb15]3- (M = Ru/Fe) were isolated as either K(18-crown-6) or K([2.2.2]-crypt) salts. The Sb10 ring contained in the [(NbCp)2Sb10]2- cluster can be viewed as an extension of two envelope-like cyclo-Sb5 units and represents by far the largest monocyclic all-antimony species. The clusters [MSb13]3- and [MSb15]3- (M = Ru/Fe) illustrate the variability of crown-like Sb8 ring motifs and reveal the fusion of different antimony fragments featuring unique Sb-Sb chain-like units. The reported synthetic approaches involve the fabrication of a variety of distinctive polyantimony anionic clusters, enhancing our understanding of the coordination chemistry of heavier group 15 elements.

19.
Food Funct ; 15(11): 6164-6173, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768319

RESUMEN

Objectives: We conducted an assessment to explore potential associations of the dietary oxidative balance score (DOBS), cardiovascular disease (CVD), with all-cause mortality among older adults, while also exploring the potential moderating effect of DOBS on the relationship between CVD and mortality. Methods: This study included 9059 older adults (≥60 years) from NHANES 2003-2014. Determination of DOBS involves scoring the combination of 16 nutrients, comprising 2 pro-oxidants and 14 anti-oxidants. Cox regression analysis was used to assess the individual associations of CVD and DOBS status with all-cause mortality. Additional evaluations were conducted to assess the combined impact of CVD and DOBS status on mortality, and the interaction were estimated. Sensitivity analyses were performed by excluding participants who died within two years. Results: The findings demonstrated a significant association between pro-oxidant diet (lower DOBS) or CVD and elevated mortality risk among older adults. It is also suggested that older adults with CVD and pro-oxidant diet exhibit the highest risk of all-cause mortality (HR = 1.96, 95% CI: 1.64-2.34), compared to individuals without CVD who follow an antioxidant-rich diet. Further stratified analysis based on CVD status revealed a different pattern in the correlation between pro-oxidant diet and all-cause mortality risk (P for interaction = 0.015). The results of sensitivity analysis were consistent. Conclusions: The lower levels of DOBS and/or CVD were significantly associated with an increased risk of all-cause mortality in older adults. Notably, we also identified a significant interaction between DOBS and CVD affecting all-cause mortality.


Asunto(s)
Enfermedades Cardiovasculares , Dieta , Encuestas Nutricionales , Humanos , Enfermedades Cardiovasculares/mortalidad , Anciano , Masculino , Femenino , Persona de Mediana Edad , Antioxidantes/metabolismo , Anciano de 80 o más Años , Estrés Oxidativo , Factores de Riesgo
20.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778277

RESUMEN

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Asunto(s)
Acer , Código de Barras del ADN Taxonómico , ADN de Plantas , ADN Ribosómico , Filogenia , Acer/genética , Código de Barras del ADN Taxonómico/métodos , ADN Ribosómico/genética , ADN de Plantas/genética , Plastidios/genética , Especificidad de la Especie , Núcleo Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...