Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2404237, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036857

RESUMEN

The development of Zn-ion batteries (ZIBs) is always hindered by the ruleless interface reactions between the solid electrode and liquid electrolyte, and seeking appropriate electrolyte additives is considered as a valid approach to stabilize the electrode/electrolyte interphases for high-performance ZIBs. Benefiting from the unique solubility of TiOSO4 in acidic solution, the composite electrolyte of 2 m ZnSO4+30 mm TiOSO4 (ZSO/TSO) is configured and its positive contribution to Zn//Zn cells, Zn//Cu cells, and Zn//NH4V4O10 batteries are comprehensively investigated by electrochemical tests and theoretical calculations. Based on the theoretical calculations, the introduction of TiOSO4 contributes to facilitating the desolvation kinetics of Zn2+ ions and guarantees the stable interface reactions of both zinc anode and NH4V4O10 cathode. As expected, Zn//Zn cells keep long-term cycling behavior for 3750 h under the test condition of 1 mA cm-2-1 mAh cm-2, Zn//Cu cells deliver high Coulombic efficiency of 99.9% for 1000 cycles under the test condition of 5 mA cm-2-1 mAh cm-2, and Zn//NH4V4O10 batteries maintain reversible specific capacity of 193.8 mAh g-1 after 1700 cycles at 5 A g-1 in ZSO/TSO electrolyte. These satisfactory results manifest that TiOSO4 additive holds great potential to improve the performances of ZIBs.

2.
Adv Mater ; : e2408213, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054683

RESUMEN

Zinc dendrite, active iodine dissolution, and polyiodide shuttle caused by the strong interaction between liquid electrolyte and solid electrode are the chief culprits for the capacity attenuation of aqueous zinc-iodine batteries (ZIBs). Herein, mullite is adopted as raw material to prepare Zn-based solid-state electrolyte (Zn-ML) for ZIBs through zinc ion exchange strategy. Owing to the merits of low electronic conductivity, low zinc diffusion energy barrier, and strong polyiodide adsorption capability, Zn-ML electrolyte can effectively isolate the redox reactions of zinc anode and AC@I2 cathode, guide the reversible zinc deposition behavior, and inhibit the active iodine dissolution as well as polyiodide shuttle during cycling process. As expected, wide operating voltage window of 2.7 V (vs Zn2+/Zn), high Zn2+ transference number of 0.51, and low activation energy barrier of 29.7 kJ mol-1 can be achieved for the solid-state Zn//Zn cells. Meanwhile, high reversible capacity of 127.4 and 107.6 mAh g-1 can be maintained at 0.5 and 1 A g-1 after 3 000 and 2 100 cycles for the solid-state Zn//AC@I2 batteries, corresponding to high-capacity retention ratio of 85.2% and 80.7%, respectively. This study will inspire the development of mineral-derived solid electrolyte, and facilitate its application in Zn-based secondary batteries.

3.
J Colloid Interface Sci ; 675: 970-979, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39003816

RESUMEN

Vinyl-bearing triazine-functionalized covalent organic frameworks (COFs) have emerged as promising materials for electrocatalysis and energy storage. Guided by density functional theory calculations, a vinyl-enriched COF (VCOF-1) featuring a donor-acceptor structure was synthesized based on the Knoevenagel reaction. Moreover, the VCOF-1@Ru without pyrolysis was obtained through chemical coordination interactions between VCOF-1 and RuCl3, exhibiting enhanced electrocatalytic performance in the hydrogen evolution reaction when exposed to 0.5 M H2SO4. The results demonstrated that the protonation of VCOF-1@Ru enhanced the electrical conductivity and accelerated the generation of H2 on the catalytically active site Ru. Additionally, VCOF-1@CNT with a tubular structure was prepared by uniformly wrapping VCOF-1 onto carbon nanotubes (CNTs) and using it as a cathode for lithium-sulfur batteries by chemically and physically encapsulating S. The enhanced performance of VCOF-1@CNT was attributed to the effective suppression of lithium polysulfide migration. This suppression was achieved through several mechanisms, including the inverse vulcanization of vinyl on VCOF-1@CNT, the enhancement of material conductivity, and the interaction between N in the materials and Li ions. This study demonstrated a strategy for enhancing material performance by precisely modulating the COF structure at the molecular level.

4.
Exploration (Beijing) ; 4(1): 20230034, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38854495

RESUMEN

Plasma etching treatment is an effective strategy to improve the electrocatalytic activity, but the improvement mechanism is still unclear. In this work, a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst is synthesized as the model catalyst, followed by plasma etching treatment with different parameters. The electrocatalytic activity improvement mechanism of the plasma etching treatment is revealed by combining the physicochemical characterizations and electrochemical results. As a result, highly active metal-nitrogen species introduced by nitrogen plasma etching treatment are recognized as the main contribution to the improved electrocatalytic activity, and the defects induced by plasma etching treatment also contribute to the improvement of the electrocatalytic activity. In addition, the prepared catalyst also demonstrates superior ORR activity and stability than the commercial Pt/C catalyst.

5.
Chem Soc Rev ; 53(12): 6295-6321, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38722208

RESUMEN

In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.

6.
Small ; : e2311782, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497813

RESUMEN

With the development of electric vehicles, exploiting anode materials with high capacity and fast charging capability is an urgent requirement for lithium-ion batteries (LIBs). Borophene, with the merits of high capacity, high electronic conductivity and fast diffusion kinetics, holds great potential as anode for LIBs. However, it is difficult to fabricate for the intrinsic electron-deficiency of boron atom. Herein, heterogeneous-structured MoB2 (h-MoB2 ) with amorphous shell and crystalline core, is prepared by solid phase molten salt method. As demonstrated, crystalline core can encapsulate the honeycomb borophene within two adjacent Mo atoms, and amorphous shell can accommodate more lithium ions to strengthen the lithium storage capacity and diffusion kinetics. According to theoretical calculations, the lithium adsorption energy in MoB2 is about -2.7 eV, and the lithium diffusion energy barrier in MoB2 is calculated to be 0.199 eV, guaranteeing the enhanced adsorption capability and fast diffusion kinetic behavior of Li+ ions. As a result, h-MoB2 anode presents high capacity of 798 mAh g-1 at 0.1 A g-1 , excellent rate performance of 183 mAh g-1 at 5 A g-1 and long-term cyclic stability for 1200 cycles. This work may inspire ideas for the fabrication of borophene analogs and two-dimensional metal borides.

7.
Adv Mater ; 36(18): e2311141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38306408

RESUMEN

Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.

8.
J Colloid Interface Sci ; 662: 333-341, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354560

RESUMEN

It is significant to tailor multifunctional electrode materials for storing sustainable energy in lithium-sulfur (Li-S) batteries and converting intermittent solar energy into H2, facilitated by electricity. In this context, COF-1@CNT obtained through interfacial interaction fulfilled both requisites via post-functionalization. Upon integrating COF-1@CNT with S as the cathode for Li-S batteries, the system exhibited an initial discharge capacity of 1360 mAh g-1. Subsequently, it maintained a sustained actual capacity even after undergoing 200 charge-discharge cycles at 0.5C. The performance improvement was attributed to the optimized conductivity due to the addition of carbon nanotubes (CNTs). Furthermore, the synergistic interaction between the nitrogen of COF-1 and lithium mitigated the shuttle effect in Li-S batteries. In the modified three-electrode electrolytic cell system, COF-1@CNT-Ru produced by COF-1@CNT with RuCl3 showed better electrochemical reactivity for photothermal-assisted hydrogen evolution reaction (HER). This effect was demonstrated by reducing the overpotential to 140 mV relative to the no-photothermal condition (180 mV) at a current density of 10 mA cm-2. This study marked the first simultaneous application of covalent organic frameworks (COFs) based materials in Li-S batteries and photothermal-assisted electrocatalysts. The modified electrocatalytic system held promise as a novel avenue for exploring solar thermal energy utilization.

9.
Nat Commun ; 15(1): 564, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233390

RESUMEN

The direct oxidation of methane to methanol under mild conditions is challenging owing to its inadequate activity and low selectivity. A key objective is improving the selective oxidation of the first carbon-hydrogen bond of methane, while inhibiting the oxidation of the remaining carbon-hydrogen bonds to ensure high yield and selectivity of methanol. Here we design ultrathin PdxAuy nanosheets and revealed a volcano-type relationship between the binding strength of hydroxyl radical on the catalyst surface and catalytic performance using experimental and density functional theory results. Our investigations indicate a trade-off relationship between the reaction-triggering and reaction-conversion steps in the reaction process. The optimized Pd3Au1 nanosheets exhibits a methanol production rate of 147.8 millimoles per gram of Pd per hour, with a selectivity of 98% at 70 °C, representing one of the most efficient catalysts for the direct oxidation of methane to methanol.

10.
J Phys Chem Lett ; 15(4): 1070-1078, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261575

RESUMEN

Two-dimensional (2D) metal borides (MBenes) with unique electronic structures and physicochemical properties hold great promise for various applications. Given the abundance of boron clusters, we proposed employing them as structural motifs to design 2D transition metal boron cluster compounds (MBnenes), an extension of MBenes. Herein, we have designed three stable MBnenes (M4(B12)2, M = Mn, Fe, Co) based on B12 clusters and investigated their electronic and magnetic properties using first-principles calculations. Mn4(B12)2 and Co4(B12)2 are semiconductors, while Fe4(B12)2 exhibits metallic behavior. The unique structure in MBnenes allows the coexistence of direct exchange interactions between adjacent metal atoms and indirect exchange interactions mediated by the clusters, endowing them with a Néel temperature (TN) up to 772 K. Moreover, both Mn4(B12)2 and Fe4(B12)2 showcase strain-independent room-temperature magnetism, making them potential candidates for spintronics applications. The MBnenes family provides a fresh avenue for the design of 2D materials featuring unique structures and excellent physicochemical properties.

11.
ACS Nano ; 18(4): 2948-2957, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227484

RESUMEN

High-entropy-alloy nanoparticles (HEA-NPs) show great potential as electrocatalysts for water splitting, fuel cells, CO2 conversion, etc. However, fine-tuning the surface, morphology, structure, and crystal phase of HEA remains a great challenge. Here, the high-temperature liquid shock (HTLS) technique is applied to produce HEA-NPs, e.g., PtCoNiRuIr HEA-NPs, with tunable elemental components, ultrafine particle size, controlled crystal phases, and lattice strains. HTLS directly applied Joule heating on the liquid mixture of metal precursors, capping agents, and reducing agents, which is feasible for controlling the morphology and structure such as the atomic arrangement of the resulting products, thereby facilitating the rationally designed nanocatalysts. Impressively, the as-obtained PtCoNiRuIr HEA-NPs delivered superior activity and long-term stability for the hydrogen evolution reaction (HER), with low overpotentials at 10 mA cm-2 and 1 A cm-2 of only 18 and 408 mV, respectively, and 10000 CV stable cycles in 0.5 M H2SO4. Furthermore, in the near future, by combining the HTLS method with artificial intelligence (AI) and theoretical calculations, it is promising to provide an advanced platform for the high-throughput synthesis of HEA nanocatalysts with optimized performance for various energy applications, which is of great significance for achieving a carbon-neutral society with an effective and environmentally friendly energy system.

12.
Nano Lett ; 24(5): 1753-1760, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38287247

RESUMEN

Polymer based low evaporation enthalpy materials have become a universal selection for improving the efficiency of solar steam generation. Although water cluster and intermediate water mechanisms have been proposed to explain the low evaporation enthalpy, the production process and microstructure of activated water are still unclear. Here, crystal plane engineering is used to investigate the intermediate water state and the water cluster activation mechanism. The unique open-closed coordination structure on the optimized crystal surface promotes the generation of firm water clusters by optimizing the intermediate water state. Under the similar solar energy absorption of all materials, crystal plane engineering increased the solar steam generation rate of the evaporator by 31.2% and increased the energy efficiency to 94.8%. Exploring the micro-evaporation process and activated water structure is expected to stimulate the development of the next generation low evaporation enthalpy materials.

13.
Adv Mater ; 36(11): e2305835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040409

RESUMEN

Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)-based heterojunction photocatalysts, such as CdS, MoS2 , and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)-based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS-based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded.

14.
ACS Nano ; 17(18): 18128-18138, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37690054

RESUMEN

Multimetallic alloys have demonstrated promising performance for the application of metal-air batteries, while it remains a challenge to design multimetallic single-atom catalysts (MM-SACs). Herein, metal-C3N4 and nitrogen-doped carbon are employed as cornerstones to synthesize MM-SACs by a general two-step method, and the inherent features of atomic dispersion and the strong electronic reciprocity between the multimetallic sites have been verified. The trimetallic FeCoZn-SACs and quatermetallic FeCoCuZn-SACs are both found to deliver superior oxygen evolution reaction and oxygen reduction reaction activity, respectively, as well as outstanding bifunctional durability. Density functional theory calculations elucidate the crucial contribution of Co sites of FeCoCuZn-SACs to the efficient catalysis of both the ORR and the OER. More importantly, Zn-air batteries with FeCoCuZn-SACs as cathodic catalysts exhibit a high power density (252 mW cm-2), high specific capacity (817 mAh gZn-1), and considerable stability (over 225 h) for charging-discharging processes. This work provides a visual perspective for the advantages of MM-SACs toward oxygen electrocatalysis.

15.
Adv Mater ; 35(52): e2303052, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589167

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.

16.
J Colloid Interface Sci ; 650(Pt B): 1466-1475, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481784

RESUMEN

It is worthwhile to explore and develop multifunctional composites with unique advantages for energy conversion and utilization. Post-synthetic modification (PSM) strategies can endow novel properties to already excellent covalent organic frameworks (COFs). In this study, we prepared a range of COF-based composites via a multi-step PSM strategy. COF-Ph-OH was acquired by demethylation between anhydrous BBr3 and - OMe, and then, M@COF-Ph-OH was further obtained by forming the N - M - O structure. COF-Ph-OH exhibited a 2e--dominated oxygen reduction reaction (ORR) pathway with high H2O2 selectivity, while M@COF-Ph-OH exhibited a 4e--dominated ORR pathway with low H2O2 selectivity, which was due to the introduction of a metal salt with a d electron structure that facilitated the acquisition of electrons and changed the adsorption energy of the reaction intermediate (*OOH). It was proven that the d electron structure was effective at regulating the reaction pathway of the electrocatalytic ORR. Moreover, Co@COF-Ph-OH showed better 4e- ORR properties than Fe@COF-Ph-OH and Ni@COF-Ph-OH. In addition, compared with the other sulfur-impregnated COF-based composites examined in this study, S-Co@COF-Ph-OH had a larger initial capacity, a weaker impedance, and a stronger cycling durability in Li-S batteries, which was attributed to the unique porous structure ensuring high sulfur utilization, the loaded cobalt accelerating LiPS electrostatic adsorption and promoting LiPS catalytic conversion, and the benzoquinoline ring structure being ultra-stable. This work offers not only a rational and feasible strategy for the synthesis of multifunctional COF-based composites, but also promotes their application in electrochemistry.

17.
Small ; 19(48): e2303813, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37507829

RESUMEN

In the present work, using one-step calcination of a mixture made of potassium hydroxide (KOH), melamine, and microplastics, this work prepares a novel graphitic carbon nitride/carbon (g-C3 N4 /C) composite, which can be employed to photo-catalytically produce hydrogen peroxide (H2 O2 ) at a high rate up to 6.146 mmol g-1 h-1 under visible light irradiation. By analyzing the energy band structure of the catalyst, the production of H2 O2 in this system consists of two single-electron reactions. The modification of KOH makes abundant N-vacancies caused by cyano-groups in g-C3 N4 , enhancing the electron absorption ability. Moreover, the introduction of graphitic carbon increases its specific surface area and porosity and improves the adsorption ability of O2 . Simultaneously, their synergism reduces the g-C3 N4 band gap, making both the conduction-band and valence-band positions more negative, showing enhanced reduction ability, lowering the energy barrier for oxygen reduction, and greatly improving the photogeneration performance of H2 O2 .

18.
Adv Sci (Weinh) ; 10(24): e2301566, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37341278

RESUMEN

Binary single-atom catalysts (BSACs) have demonstrated fascinating activities compared to single atom catalysts (SACs) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Notably, Fe SACs is one of the most promising ORR electrocatalysts, and further revealing the synergistic effects between Fe and other 3d transition metals (M) for FeM BSACs are very important to enhance bifunctional performance. Herein, density functional theory (DFT) calculations are first adapted to demonstrate the role of various transition metals on the bifunctional activity of Fe sites, and a notable volcano relationship is established through the generally accepted adsorption free energy that ΔG* OH for ORR, and ΔG* O -ΔG* OH for OER, respectively. Further, ten of the atomically dispersed FeM anchored on nitrogen-carbon support (FeM-NC) are successfully synthesized with typical atomic dispersion by a facile movable type printing method. The experimental data confirms the bifunctional activity diversity of FeM-NC between the early- and late- transition metals, agrees very well with the DFT results. More importantly, the optimal FeCu-NC shows the expected performance with high ORR and OER activity, thereby, the assembled rechargeable zinc-air battery delivers a high power density of 231 mW cm-2 , and an impressive stability that can be stably operated over 300 h.

19.
J Colloid Interface Sci ; 645: 146-153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37148680

RESUMEN

Covalent organic frameworks (COFs) are considered as a class of potential candidates for energy storage and catalysis. In this work, a COF containing sulfonic groups was prepared to be a modified separator in lithium-sulfur batteries (LSBs). Benefiting from the charged sulfonic groups, the COF-SO3 cell exhibited higher ionic conductivity (1.83 mS⋅cm-1). Moreover, the modified COF-SO3 separator not only inhibited the shuttle of polysulfide but also promoted Li+ diffusion, thanks to the electrostatic interaction. The COF-SO3 cell also showed excellent electrochemical performance that the initial specific capacity of the battery was 890 mA h g-1 at 0.5 C and demonstrated 631 mA h g-1 after 200 cycles. In addition, COF-SO3 with satisfactory electrical conductivity was also used as an electrocatalyst toward oxygen evolution reaction (OER) via cation-exchange strategy. The electrocatalyst COF-SO3@FeNi possessed a low overpotential (350 mV at 10 mA cm-2) in an alkaline aqueous electrolyte. Furthermore, COF-SO3@FeNi exhibited exceptional stability, and the overpotential increased about 11 mV at a current density of 10 mA cm-2 after 1000 cycles. This work facilitates the application of versatile COFs in the electrochemistry field.

20.
Small ; 19(25): e2301128, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919799

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA