Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 62(3): 817-827, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38032458

RESUMEN

Accurate segmentation of hepatic vessel is significant for the surgeons to design the preoperative planning of liver surgery. In this paper, a sequence-based context-aware association network (SCAN) is designed for hepatic vessel segmentation, in which three schemes are incorporated to simultaneously extract the 2D features of hepatic vessels and capture the correlations between adjacent CT slices. The two schemes of slice-level attention module and graph association module are designed to bridge feature gaps between the encoder and the decoder in the low- and high-dimensional spaces. The region-edge constrained loss is designed to well optimize the proposed SCAN, which integrates cross-entropy loss, dice loss, and edge-constrained loss. Experimental results indicate that the proposed SCAN is superior to several existing deep learning frameworks, in terms of 0.845 DSC, 0.856 precision, 0.866 sensitivity, and 0.861 F1-score.


Asunto(s)
Cirujanos , Humanos , Entropía , Procesamiento de Imagen Asistido por Computador
2.
Small Methods ; 7(9): e2300152, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37203278

RESUMEN

In recent years, layered oxides have been extensively studied as promising cathode materials for sodium ion batteries. However, layered oxides undergo complex phase transitions during charge-discharge process, which adversely affects the electrochemical performance. High-entropy layered oxides as a unique design concept can effectively improve the cycling performance of cathode materials by virtue of the 2D ion migration channels between the layers. Based on the concepts of high-entropy and layered oxides, this paper reviews the research status of high-entropy layered oxides in the field of sodium-ion batteries, focusing on the connection between high-entropy and layered oxide phase transitions during electrochemical charging and discharging. Finally, the advantages of layered cathode materials based high-entropy are summarized, and the opportunities and challenges of future high-entropy layered materials are proposed.

3.
ACS Appl Mater Interfaces ; 15(9): 11691-11702, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812350

RESUMEN

An anionic redox reaction is an extraordinary method for obtaining high-energy-density cathode materials for sodium-ion batteries (SIBs). The commonly used inactive-element-doped strategies can effectively trigger the O redox activity in several layered cathode materials. However, the anionic redox reaction process is usually accompanied by unfavorable structural changes, large voltage hysteresis, and irreversible O2 loss, which hinders its practical application to a large extent. In the present work, we take the doping of Li elements into Mn-based oxide as an example and reveal the local charge trap around the Li dopant will severely impede O charge transfer upon cycling. To overcome this obstacle, additional Zn2+ codoping is introduced into the system. Theoretical and experimental studies show that Zn2+ doping can effectively release the charge around Li+ and homogeneously distribute it on Mn and O atoms, thus reducing the overoxidation of O and improving the stability of the structure. Furthermore, this change in the microstructure makes the phase transition more reversible. This study aimed to provide a theoretical framework for further improve the electrochemical performance of similar anionic redox systems and provide insights into the activation mechanism of the anionic redox reaction.

4.
Materials (Basel) ; 14(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443188

RESUMEN

Semi-solid billets of GH3536 alloy were prepared by semi-solid isothermal treatment of wrought superalloy method. GH3536 samples were soaked at several semi-solid temperatures (1350 °C, 1360 °C, 1364 °C, and 1367 °C) for 5-120 min. The effects of temperature and soaking time on the microstructure of GH3536 billets were studied. The results indicated that the microstructure was affected by coalescence mechanism, Ostwald ripening mechanism, and breaking up mechanism. Semi-solid microstructure of GH3536 alloy was composed of spherical solid particles and liquid phases, and the liquid phases affected the microstructure greatly. At 1350 °C, the coalescence mechanism was dominant at the early stage of isothermal treatment, then the Ostwald ripening mechanism played a major role for the longer soaking times. At higher temperatures, the breaking up mechanism occurred to form large irregular grains and small spherical grains. As the heating continued, the Ostwald ripening mechanism was dominant. However, at 1364 °C and 1367 °C, the solid grains had irregular shapes and large sizes when the isothermal time was 120 min. The optimum parameters for the preparation of GH3536 semi-solid billets were: temperature of 1364-1367 °C and soaking time of 60-90 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA