Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(16): 4494-4500, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38634706

RESUMEN

In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.

2.
ACS Appl Mater Interfaces ; 15(4): 5218-5228, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688511

RESUMEN

The valorization of CO2 to produce high-value chemicals, such as methanol and hydrocarbons, represents key technology in the future net-zero society. Herein, we report further investigation of a PdZn/ZrO2 + SAPO-34 catalyst for conversion of CO2 and H2 into propane, already presented in a previous work. The focus of this contribution is on the scale up of this catalyst. In particular, we explored the effect of mixing (1:1 mass ratio) and shaping the two catalyst functions into tablets and extrudates using an alumina binder. Their catalytic performance was correlated with structural and spectroscopic characteristics using methods such as FT-IR and X-ray absorption spectroscopy. The two scaled-up bifunctional catalysts demonstrated worse performance than a 1:1 mass physical mixture of the two individual components. Indeed, we demonstrated that the preparation negatively affects the element distribution. The physical mixture is featured by the presence of a PdZn alloy, as demonstrated by our previous work on this sample and high hydrocarbon selectivity among products. For both tablets and extrudates, the characterization showed Zn migration to produce Zn aluminates from the alumina binder phase upon reduction. Moreover, the extrudates showed a remarkable higher amount of Zn aluminates before the activation rather than the tablets. Comparing tablets and extrudates with the physical mixture, no PdZn alloy was observed after activation and only the extrudates showed the presence of metallic Pd. Due to the Zn migration, SAPO-34 poisoning and subsequent deactivation of the catalyst could not be excluded. These findings corroborated the catalytic results: Zn aluminate formation and Pd0 separation could be responsible for the decrease of the catalytic activity of the extrudates, featured by high methane selectivity and unconverted methanol, while tablets displayed reduced methanol conversion to hydrocarbons mainly attributed to the partial deactivation of the SAPO-34.

3.
JACS Au ; 1(10): 1719-1732, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723275

RESUMEN

The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g-1 h-1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA