Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Mol Oncol ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38770541

Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.

2.
Leukemia ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38755420

In chronic lymphocytic leukemia (CLL), analysis of TP53 aberrations (deletion and/or mutation) is a crucial part of treatment decision-making algorithms. Technological and treatment advances have resulted in the need for an update of the last recommendations for TP53 analysis in CLL, published by ERIC, the European Research Initiative on CLL, in 2018. Based on the current knowledge of the relevance of low-burden TP53-mutated clones, a specific variant allele frequency (VAF) cut-off for reporting TP53 mutations is no longer recommended, but instead, the need for thorough method validation by the reporting laboratory is emphasized. The result of TP53 analyses should always be interpreted within the context of available laboratory and clinical information, treatment indication, and therapeutic options. Methodological aspects of introducing next-generation sequencing (NGS) in routine practice are discussed with a focus on reliable detection of low-burden clones. Furthermore, potential interpretation challenges are presented, and a simplified algorithm for the classification of TP53 variants in CLL is provided, representing a consensus based on previously published guidelines. Finally, the reporting requirements are highlighted, including a template for clinical reports of TP53 aberrations. These recommendations are intended to assist diagnosticians in the correct assessment of TP53 mutation status, but also physicians in the appropriate understanding of the lab reports, thus decreasing the risk of misinterpretation and incorrect management of patients in routine practice whilst also leading to improved stratification of patients with CLL in clinical trials.

3.
Geroscience ; 46(3): 3005-3019, 2024 Jun.
Article En | MEDLINE | ID: mdl-38172489

Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.


Aging , Leukocytes, Mononuclear , Humans , Phylogeny , Aging/genetics , Longevity , Biomarkers
4.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Article En | MEDLINE | ID: mdl-37271223

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


ADAM17 Protein , Interleukin-6 , Signal Transduction , Cytokine Receptor gp130/genetics , Epithelial Cells/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Signal Transduction/genetics , Humans
5.
Cell Mol Gastroenterol Hepatol ; 15(6): 1391-1419, 2023.
Article En | MEDLINE | ID: mdl-36868311

BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.


Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Fibroblasts/metabolism , Coculture Techniques , Organoids/metabolism , Cancer-Associated Fibroblasts/metabolism , Colorectal Neoplasms/pathology , Tumor Microenvironment
6.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119321, 2022 10.
Article En | MEDLINE | ID: mdl-35779629

Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similarities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.


Lymphocyte Activation , Th2 Cells , Cell Differentiation/genetics , Humans , Membrane Glycoproteins/metabolism , Sequence Analysis, RNA , Th17 Cells , Th2 Cells/metabolism
7.
Mol Cancer ; 21(1): 89, 2022 03 30.
Article En | MEDLINE | ID: mdl-35354467

BACKGROUND: Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS: To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS: We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS: We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.


Methyltransferases , Prostatic Neoplasms , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/physiology , Humans , Male , Methyltransferases/genetics , Mice , Mutation , Prostatic Neoplasms/metabolism , Exome Sequencing
8.
Genes (Basel) ; 13(2)2022 02 14.
Article En | MEDLINE | ID: mdl-35205390

The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.


MicroRNAs/metabolism , Nasopharynx/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Down-Regulation , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/chemistry , Nasopharynx/virology , Principal Component Analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Transcriptome , Up-Regulation
9.
Blood ; 138(25): 2670-2685, 2021 12 23.
Article En | MEDLINE | ID: mdl-33945616

Patients with chronic lymphocytic leukemia (CLL) bearing TP53 mutations experience chemorefractory disease and are therefore candidates for targeted therapy. However, the significance of low-burden TP53 mutations with <10% variant allele frequency (VAF) remains a matter for debate. Herein, we describe clonal evolution scenarios of low-burden TP53 mutations, the clinical impact of which we analyzed in a "real-world" CLL cohort. TP53 status was assessed by targeted next-generation sequencing (NGS) in 511 patients entering first-line treatment with chemo- and/or immunotherapy and 159 patients in relapse before treatment with targeted agents. Within the pretherapy cohort, 16% of patients carried low-burden TP53 mutations (0.1% to 10% VAF). Although their presence did not significantly shorten event-free survival after first-line therapy, it affected overall survival (OS). In a subgroup with TP53 mutations of 1% to 10% VAF, the impact on OS was observed only in patients with unmutated IGHV who had not received targeted therapy, as patients benefited from switching to targeted agents, regardless of initial TP53 mutational status. Analysis of the clonal evolution of low-burden TP53 mutations showed that the highest expansion rates were associated with fludarabine, cyclophosphamide, and rituximab regimen in both first- and second-line treatments (median VAF increase, 14.8× and 11.8×, respectively) in contrast to treatment with less intense treatment regimens (1.6×) and no treatment (0.8×). In the relapse cohort, 33% of patients carried low-burden TP53 mutations, which did not expand significantly upon targeted treatment (median VAF change, 1×). Sporadic cases of TP53 mutations' clonal shifts were connected with the development of resistance-associated mutations. Altogether, our data support the incorporation of low-burden TP53 variants in clinical decision making.


Clonal Evolution , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clonal Evolution/drug effects , Female , Humans , Immunotherapy , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation/drug effects , Tumor Cells, Cultured
10.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article En | MEDLINE | ID: mdl-33804860

The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter, spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in post-mortem human brain samples. The proteins translated from the CNS and reference transcripts differ only at their N-terminal regions. To dissect functional differences between CNS-specific isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by RNA sequencing. Compared to controls, more differentially expressed genes were observed after activation of the CNS than the reference gene promoter, while the magnitude of alternative exon usage was comparable between activation of the two promoters. Promoter-selective associations were observed with canonical signaling pathways, mitochondrial and nervous system functions and neurological diseases. The distinct N-terminal as well as the shared downstream regions of PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes of amyotrophic lateral sclerosis and Parkinson's disease were noted with differentially expressed genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus, CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific isoforms and reference proteins have common, complementary and selective functions relevant for neurodegenerative diseases.


Gene Regulatory Networks , Neurodegenerative Diseases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Promoter Regions, Genetic , Transcriptional Activation , Cell Line, Tumor , Exons , HEK293 Cells , Humans , Neurons/metabolism , Nucleotide Motifs , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcriptome
12.
Int J Cancer ; 148(3): 731-747, 2021 02 01.
Article En | MEDLINE | ID: mdl-33034050

Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein µ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRß) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.


Crystallins/genetics , Crystallins/metabolism , Down-Regulation , Prostatic Neoplasms/pathology , Signal Transduction , Cell Line, Tumor , Choline/administration & dosage , Choline/analogs & derivatives , Cohort Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Metabolomics , Neoplasm Staging , PC-3 Cells , Positron Emission Tomography Computed Tomography , Prognosis , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Thyroid Hormone/genetics , Sequence Analysis, RNA , Tissue Array Analysis , Triiodothyronine/antagonists & inhibitors , Triiodothyronine/metabolism , mu-Crystallins
13.
Redox Biol ; 32: 101458, 2020 05.
Article En | MEDLINE | ID: mdl-32145456

Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.


Intranuclear Inclusion Bodies , Nerve Tissue Proteins , Ataxin-1/genetics , Ataxin-1/metabolism , Humans , Intranuclear Inclusion Bodies/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Stress
14.
PLoS One ; 14(2): e0211978, 2019.
Article En | MEDLINE | ID: mdl-30742682

Current progress in the field of next-generation transcriptome sequencing have contributed significantly to the study of various malignancies including glioblastoma multiforme (GBM). Differential sequencing of transcriptomes of patients and non-tumor controls has a potential to reveal novel transcripts with significant role in GBM. One such candidate group of molecules are long non-coding RNAs (lncRNAs) which have been proved to be involved in processes such as carcinogenesis, epigenetic modifications and resistance to various therapeutic approaches. To maximize the value of transcriptome sequencing, a proper protocol for library preparation from tissue-derived RNA needs to be found which would produce high quality transcriptome sequencing data and increase the number of detected lncRNAs. It is important to mention that success of library preparation is determined by the quality of input RNA, which is in case of real-life tissue specimens very often altered in comparison to high quality RNA commonly used by manufacturers for development of library preparation chemistry. In the present study, we used GBM and non-tumor brain tissue specimens and compared three different commercial library preparation kits, namely NEXTflex Rapid Directional qRNA-Seq Kit (Bioo Scientific), SENSE Total RNA-Seq Library Prep Kit (Lexogen) and NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB). Libraries generated using SENSE kit were characterized by the most normal distribution of normalized average GC content, the least amount of over-represented sequences and the percentage of ribosomal RNA reads (0.3-1.5%) and highest numbers of uniquely mapped reads and reads aligning to coding regions. However, NEBNext kit performed better having relatively low duplication rates, even transcript coverage and the highest number of hits in Ensembl database for every biotype of our interest including lncRNAs. Our results indicate that out of three approaches the NEBNext library preparation kit was most suitable for the study of lncRNAs via transcriptome sequencing. This was further confirmed by highly consistent data reached in an independent validation on an expanded cohort.


Brain Neoplasms/genetics , Gene Expression Profiling/methods , Glioblastoma/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Reagent Kits, Diagnostic , Sequence Analysis, RNA
15.
Nucleic Acids Res ; 46(2): 765-781, 2018 01 25.
Article En | MEDLINE | ID: mdl-29220521

RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.


Mitochondria/genetics , RNA Editing , RNA, Mitochondrial/genetics , Trypanosomatina/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Genome, Mitochondrial/genetics , Genome, Protozoan/genetics , Mitochondria/metabolism , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA Splicing , RNA, Mitochondrial/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosomatina/metabolism
16.
Eur J Immunol ; 48(2): 273-282, 2018 02.
Article En | MEDLINE | ID: mdl-29080214

Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1f/f ) or that express normal AID levels (yy1f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sµ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination.


B-Lymphocytes/physiology , Mutagenesis/genetics , YY1 Transcription Factor/genetics , Animals , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded , Female , Immunoglobulin Class Switching/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation/genetics , Protein Binding , Somatic Hypermutation, Immunoglobulin/genetics , Ubiquitination
17.
Bioinformatics ; 33(23): 3802-3804, 2017 Dec 01.
Article En | MEDLINE | ID: mdl-29036643

MOTIVATION: Sanger sequencing is still being employed for sequence variant detection by many laboratories, especially in a clinical setting. However, chromatogram interpretation often requires manual inspection and in some cases, considerable expertise. RESULTS: We present GLASS, a web-based Sanger sequence trace viewer, editor, aligner and variant caller, built to assist with the assessment of variations in 'curated' or user-provided genes. Critically, it produces a standardized variant output as recommended by the Human Genome Variation Society. AVAILABILITY AND IMPLEMENTATION: GLASS is freely available at http://bat.infspire.org/genomepd/glass/ with source code at https://github.com/infspiredBAT/GLASS. CONTACT: nikos.darzentas@gmail.com or malcikova.jitka@fnbrno.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Genotyping Techniques/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Software , Alternative Splicing , Humans , Polymorphism, Genetic , Tumor Suppressor Protein p53/genetics
18.
Epilepsia ; 58(10): 1782-1793, 2017 10.
Article En | MEDLINE | ID: mdl-28815576

OBJECTIVE: Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. METHODS: Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. RESULTS: These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). SIGNIFICANCE: This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies.


Epilepsy, Temporal Lobe/genetics , Gene Expression Regulation , Hippocampus/pathology , MicroRNAs/genetics , Adolescent , Adult , Computer Simulation , Down-Regulation , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/surgery , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Hippocampus/metabolism , Hippocampus/surgery , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Sclerosis , Sequence Analysis, RNA , Up-Regulation , Young Adult
19.
Leuk Lymphoma ; 58(1): 70-79, 2017 01.
Article En | MEDLINE | ID: mdl-27185377

The clinical course of chronic lymphocytic leukemia (CLL) is highly variable. Patients with unmutated IGHV (U-CLL) usually progress rapidly, whereas patients with mutated IGHV (M-CLL) have a more indolent disease. The expression of several genes correlates closely with the IGHV mutational status and could be used to assess prognosis in CLL. We analyzed the prognostic relevance of COBLL1, LPL, and ZAP70 gene expression, which correlated with IGHV mutational status (p < 0.0001), in 117 CLL patients and established a prognostic parameter dividing the tested cohort according to the disease aggressiveness. Our prognostic parameter was validated on an independent cohort of 161 CLL patients and achieved a high accuracy (94%). Patients divided according to the prognostic parameter differ in overall survival and time to first treatment (p < 0.0001, HR = 2.300/5.970, 95% CI: 1.587-3.450/4.621-15.86). Our approach provides a reliable alternative method to prognosis assessment via IGHV mutational status analysis.


Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Lipoprotein Lipase/genetics , Mutation , Transcription Factors/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Disease Progression , Female , Gene Expression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Male , Middle Aged , Prognosis , ROC Curve , Reproducibility of Results , Survival Analysis
20.
Tumour Biol ; 36(5): 3371-80, 2015 May.
Article En | MEDLINE | ID: mdl-25527155

TP53 gene defects represent a strong adverse prognostic factor for patient survival and treatment resistance in chronic lymphocytic leukemia (CLL). Although various methods for TP53 mutation analysis have been reported, none of them allow the identification of all occurring sequence variants, and the most suitable methodology is still being discussed. The aim of this study was to determine the limitations of commonly used methods for TP53 mutation examination in CLL and propose an optimal approach for their detection. We examined 182 CLL patients enriched for high-risk cases using denaturing high-performance liquid chromatography (DHPLC), functional analysis of separated alleles in yeast (FASAY), and the AmpliChip p53 Research Test in parallel. The presence of T53 gene mutations was also evaluated using ultra-deep next generation sequencing (NGS) in 69 patients. In total, 79 TP53 mutations in 57 (31 %) patients were found; among them, missense substitutions predominated (68 % of detected mutations). Comparing the efficacy of the methods used, DHPLC and FASAY both combined with direct Sanger sequencing achieved the best results, identifying 95 % and 93 % of TP53-mutated patients. Nevertheless, we showed that in CLL patients carrying low-proportion TP53 mutation, the more sensitive approach, e.g., ultra-deep NGS, might be more appropriate. TP53 gene analysis using DHPLC or FASAY is a suitable approach for mutation detection. Ultra-deep NGS has the potential to overcome shortcomings of methods currently used, allows the detection of minor proportion mutations, and represents thus a promising methodology for near future.


Genes, p53 , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Adult , Aged , Chromatography, High Pressure Liquid , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide
...