Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Biomed Environ Sci ; 37(4): 387-398, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727161

Objective: Recombinase-aided polymerase chain reaction (RAP) is a sensitive, single-tube, two-stage nucleic acid amplification method. This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Acinetobacter baumannii (AB) in the bloodstream based on recombinant human mannan-binding lectin protein (M1 protein)-conjugated magnetic bead (M1 bead) enrichment of pathogens combined with RAP. Methods: Recombinant plasmids were used to evaluate the assay sensitivity. Common blood influenza bacteria were used for the specific detection. Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR (M-RAP) and quantitative PCR (qPCR) assays. Kappa analysis was used to evaluate the consistency between the two assays. Results: The M-RAP method had sensitivity rates of 1, 10, and 1 copies/µL for the detection of SA, PA, and AB plasmids, respectively, without cross-reaction to other bacterial species. The M-RAP assay obtained results for < 10 CFU/mL pathogens in the blood within 4 h, with higher sensitivity than qPCR. M-RAP and qPCR for SA, PA, and AB yielded Kappa values of 0.839, 0.815, and 0.856, respectively ( P < 0.05). Conclusion: An M-RAP assay for SA, PA, and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.


Bacteremia , Mannose-Binding Lectin , Humans , Mannose-Binding Lectin/blood , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteremia/blood , Recombinases/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Bacteria/genetics , Bacteria/isolation & purification
2.
Diagn Microbiol Infect Dis ; 104(4): 115801, 2022 Dec.
Article En | MEDLINE | ID: mdl-36130430

Timely identification of respiratory pathogens guides specific treatment, reduces hospital costs and minimizes the excessive use of antibiotics. A new multiplex real-time PCR panel was developed based on an automatic molecular detection and analysis system (AutoMolec system), consisting of three separate internally controlled assays. Mycoplasma pneumoniae, Chlamydia pneumoniae, adenovirus, human metapneumovirus, influenza B virus, respiratory syncytial virus and human parainfluenza virus 1-3 may be directly detected in original samples. The system's clinical performance was evaluated by comparison with an approved commercial kit, using 517 clinical samples. The limit of detection of the AutoMolec mRT-PCR panel ranged from 4 × 10-4 ∼3.3 TCID50/mL and no cross-reaction with common respiratory pathogens was observed. The AutoMolec mRT-PCR panel had 99.09% sensitivity and 100.0% specificity and overall detection consistency was 99.61%, making it comparable to that of the commercial kit. Therefore, the AutoMolec mRT-PCR panel has great potential for routine screening of respiratory infection in China.


Metapneumovirus , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Real-Time Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Metapneumovirus/genetics , Sensitivity and Specificity
3.
J Microbiol Methods ; 198: 106504, 2022 07.
Article En | MEDLINE | ID: mdl-35654228

BACKGROUND: Pneumonia caused by Mycoplasma pneumoniae is common in the elderly and children, and pneumonia caused by Chlamydia trachomatis is prevalent in newborns. This study aimed to establish a rapid, sensitive, and simple method for the direct detection of M. pneumoniae and C. trachomatis in clinical samples without DNA extraction. METHODS: We established a duplex recombinase-aided amplification (RAA) assay with the RNAseP gene as an internal control for detecting the P1 gene of M. pneumoniae and the ORF8 gene of C. trachomatis, respectively. The results were obtained at 39 °C within 15-20 min. A total of 130 clinical samples suspected of M. pneumoniae or C. trachomatis infection were collected and tested by duplex RAA and PCR. DNA extracted via a commercial kit or treated with a nucleic acid-releasing agent was used and compared, respectively. Standard recombinant plasmids were used to test the sensitivity of the duplex RAA assay. In addition, other similar common pathogens were used to verify the specificity of the duplex RAA assay. RESULTS: The sensitivity of the duplex RAA assay for detecting M. pneumoniae and C. trachomatis was 10 copies/µL using recombinant plasmids. Compared with PCR, the sensitivity and specificity of duplex RAA assays for M. pneumoniae and C. trachomatis was 100% using clinical DNA samples extracted using a commercial kit and a nucleic acid-releasing agent, and the Kappa value was 1. CONCLUSION: The advantages of this duplex RAA assay include high sensitivity and specificity, short duration, and simple extraction steps, with potential for use in the on-site detection of M. pneumoniae and C. trachomatis in resource-limited settings.


Nucleic Acids , Recombinases , Aged , Child , Chlamydia trachomatis/genetics , Humans , Infant, Newborn , Mycoplasma pneumoniae/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
4.
AMB Express ; 12(1): 71, 2022 Jun 11.
Article En | MEDLINE | ID: mdl-35689713

Epstein-Barr virus (EBV), a common human γ-herpesvirus, infects more than 90% of adults worldwide. The purpose of this study was to establish a novel EBV detection method by combining the recombinase aided amplification (RAA) assay with an initial enrichment step that utilizes magnetic beads coated with a recombinant human mannan-binding lectin (rhMBL, M1 protein). An M1 protein-protein A magnetic bead complex (M1 beads) was prepared and used to achieve separation and enrichment of EBV from blood. After nucleic acid extraction, DNA was amplified by RAA. Using 388 whole blood samples and 1 serum sample, we explored the specificity, sensitivity and applicability of the newly developed detection method and compared it with commercial quantitative real-time polymerase chain reaction (qPCR) following M1 bead enrichment, traditional qPCR and traditional RAA. After enrichment, the positivity rate of EBV was increased from 15.94% to 17.74% by RAA (P < 0.05) and from 7.20% to 15.17% by qPCR (P < 0.05). The viral loads after enrichment were increased by 1.13 to 23.19-fold (P < 0.05). Our data demonstrates that an RAA assay incorporating M1 bead enrichment is a promising tool for detecting low EBV viral loads in blood samples that will facilitate an early response to EBV infection.

5.
Biomed Environ Sci ; 34(8): 650-655, 2021 Aug 20.
Article En | MEDLINE | ID: mdl-34474727

Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two of the most prevalent human herpesviruses, cause a wide spectrum of diseases and symptoms and are associated with serious health problem. In this study, we developed an internal control reference recombinase-aided amplification (ICR-RAA) assay for the rapid detection of EBV and CMV within 30 min. The assay had a sensitivity of 5 and 1 copies/test for EBV and CMV, respectively, with no cross reaction with other pathogens. In comparison with those of the commercial quantitative polymerase chain reaction (qPCR), the sensitivity of the EBV and CMV ICR-RAAs using extracted DNA was 93.33% and 84.84%, respectively; the specificity was 98.75% and 100.00%, respectively; and the Kappa values were 0.930 and 0.892 ( P < 0.05), respectively. In comparison with those of qPCR, the sensitivity of the EBV and CMV ICR-RAAs using the DNA by thermal lysis was 72.22% and 80.00%, respectively; the specificity was 100.00%; and the Kappa values were 0.764 and 0.878 ( P < 0. 05), respectively. Thus, rapid and specific detection of EBV and CMV is possible using ICR-RAA assays.


Cytomegalovirus/genetics , DNA, Viral/analysis , Herpesvirus 4, Human/genetics , Nucleic Acid Amplification Techniques , Recombinases/genetics , Adolescent , Adult , Child , Child, Preschool , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/virology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
6.
Hum Cell ; 34(2): 325-334, 2021 Mar.
Article En | MEDLINE | ID: mdl-33415691

In this study, we aimed to investigate the role of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in cardiac remodeling after myocardial infarction (MI) and explore the underlying molecular mechanism. MI model was established by ligation of the left anterior descending coronary artery. C57/BL6J mice were randomly administered with 3.0 mg/kg/day PHPS1 (PHPS1-treated group) or normal saline (model group) by intraperitoneal injection. After 4 weeks of infusion, the effects of PHPS1 on cardiac remodeling were evaluated. Echocardiography results showed that PHPS1 treatment aggravated the MI-induced deterioration of cardiac function, with worse cardiac function parameters. PHPS1 treatment significantly increased the infarcted area, as well as the fibrotic area and the expression of collagen I and collagen III. Western blots and immunofluorescence staining showed that PHPS1 treatment up-regulated the expression of p-GRK2, p-SMAD2/3 and p-ERK1/2, while U0126 reversed the effect of PHPS1. The present study indicated that PHPS1 treatment contributed to myocardial fibrosis and infarction by activating ERK/SMAD signaling pathway, suggesting that SHP-2 may be a promising treatment target for cardiac remodeling after MI.


MAP Kinase Signaling System/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/pathology , SH2 Domain-Containing Protein Tyrosine Phosphatases/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Ventricular Remodeling/drug effects , Animals , Disease Models, Animal , Fibrosis/genetics , MAP Kinase Signaling System/genetics , Mice, Inbred C57BL , Myocardium/pathology , SH2 Domain-Containing Protein Tyrosine Phosphatases/administration & dosage
7.
Int J Infect Dis ; 93: 224-230, 2020 Apr.
Article En | MEDLINE | ID: mdl-32045697

OBJECTIVES: Bordetella pertussis is a highly contagious respiratory agent and is the causative pathogen of pertussis, which primarily affects children. Current diagnostic techniques for this pathogen have a variety of limitations including a long culture time, low bacterial load, and lack of specificity. METHODS: This article reports the development of a one-tube nested quantitative real-time PCR assay using the locked nucleic acid (LNA) technique (LNA-OTN-q-PCR), targeting the BP485 gene and using a simple inexpensive extraction method. A total of 130 clinical samples from patients with clinically suspected pertussis, collected from the Children's Hospital of Hebei, China, were tested by LNA-OTN-q-PCR assay. RT-PCR and two-step semi-nested PCR assays were performed in parallel for comparison. RESULTS: Only strains of B. pertussis were identified as positive, whereas all of the remaining strains were appropriately identified as negative by the LNA-OTN-q-PCR assay. A single copy per reaction can be detected by the LNA-OTN-q-PCR assay. Additionally, the sensitivity of this method was 100 times that of the RT-PCR assay (100 copies per reaction). Sixty-three of the 130 clinical samples were detected positive by LNA-OTN-q-PCR assay; in contrast, RT-PCR was able to detect only 41 positive samples. Following this, all 63 samples were positively identified by two-step semi-nested PCR. Compared with the two-step semi-nested PCR assay, both the specificity and sensitivity of the LNA-OTN-q-PCR assay using purified DNA and crude extract were 100%. CONCLUSIONS: This assay was able to detect B. pertussis infection with high sensitivity and specificity. This test shows great potential as a promising technique to detect B. pertussis in both clinical laboratories and public health settings.


Bordetella pertussis/isolation & purification , Oligonucleotides , Real-Time Polymerase Chain Reaction/methods , Whooping Cough/diagnosis , Bordetella pertussis/genetics , Child , China , DNA, Bacterial , Female , Humans , Male , Sensitivity and Specificity , Whooping Cough/microbiology
...