Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 10819, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734716

Currently, there are no accurate means to predict spontaneous preterm birth (SPTB). Recently, we observed low expression of alpha-1 antitrypsin (AAT) in SPTB placentas. Present aim was to compare the concentrations of maternal serum AAT in pregnancies with preterm and term deliveries. Serum C-reactive protein (CRP) was used as a reference inflammatory marker. Two populations were studied. The first population comprised women who eventually gave birth spontaneously preterm (SPTB group) or term (control group). The second population included pregnant women shortly before delivery and nonpregnant women. We observed that serum AAT levels were higher in the SPTB group than in the controls, and a similar difference was observed when serum CRP was considered in multivariable analysis. However, the overlap in the AAT concentrations was considerable. No statistical significance was observed in serum AAT levels between preterm and term pregnancies at delivery. However, AAT levels were higher at delivery compared to nonpregnant controls. We did not observe a strong correlation between serum AAT and CRP in early pregnancy samples and at labor. We propose that during early pregnancy, complicated by subsequent SPTB, modest elevation of serum AAT associates with SPTB.


C-Reactive Protein , Premature Birth , alpha 1-Antitrypsin , Humans , Female , Pregnancy , alpha 1-Antitrypsin/blood , Premature Birth/blood , Adult , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Biomarkers/blood , Infant, Newborn , Term Birth/blood , Case-Control Studies
2.
PLoS Genet ; 19(10): e1010982, 2023 Oct.
Article En | MEDLINE | ID: mdl-37871108

BACKGROUND: Preterm birth (<37 weeks of gestation) is a major cause of neonatal death and morbidity. Up to 40% of the variation in timing of birth results from genetic factors, mostly due to the maternal genome. METHODS: We conducted a genome-wide meta-analysis of gestational duration and spontaneous preterm birth in 68,732 and 98,370 European mothers, respectively. RESULTS: The meta-analysis detected 15 loci associated with gestational duration, and four loci associated with preterm birth. Seven of the associated loci were novel. The loci mapped to several biologically plausible genes, for example HAND2 whose expression was previously shown to decrease during gestation, associated with gestational duration, and GC (Vitamin D-binding protein), associated with preterm birth. Downstream in silico-analysis suggested regulatory roles as underlying mechanisms for the associated loci. LD score regression found birth weight measures as the most strongly correlated traits, highlighting the unique nature of spontaneous preterm birth phenotype. Tissue expression and colocalization analysis revealed reproductive tissues and immune cell types as the most relevant sites of action. CONCLUSION: We report novel genetic risk loci that associate with preterm birth or gestational duration, and reproduce findings from previous genome-wide association studies. Altogether, our findings provide new insight into the genetic background of preterm birth. Better characterization of the causal genetic mechanisms will be important to public health as it could suggest new strategies to treat and prevent preterm birth.


Premature Birth , Female , Infant, Newborn , Humans , Premature Birth/genetics , Genome-Wide Association Study/methods , Mothers , Phenotype , Birth Weight
3.
Pediatr Res ; 94(2): 520-529, 2023 08.
Article En | MEDLINE | ID: mdl-36788289

BACKGROUND: Specific heat shock proteins are associated with pregnancy complications, including spontaneous preterm birth (SPTB). Placental proteomics and whole exome sequencing recently suggested an association between heat shock protein HSPA5 and uncomplicated SPTB. In the present study, we investigated the localization of and possible roles for HSPA5 in SPTB. METHODS: Western blot was performed to validate the result from the previously published proteomic analysis. We used qPCR to assess mRNA expression of genes and immunohistochemistry and immunoelectron microscopy to examine localization of HSPA5 in placental tissue. We silenced the HSPA5 gene in the HTR8/SVneo human trophoblast cell line to investigate possible functions of HSPA5. RESULTS: HSPA5 was upregulated in placentas from SPTBs compared to spontaneous term births. We did not observe upregulation of HSPA5 mRNA in placental samples. The protein was localized in placental trophoblast in both spontaneous preterm and term placentas. Gene silencing of HSPA5 in human trophoblast cell culture affected the inflammatory response and decreased the expression of several proinflammatory genes. CONCLUSIONS: We suggest that upregulation of HSPA5 in the placenta is associated with spontaneous preterm labor. HSPA5 may promote the inflammatory response and alter the anti-inflammatory state of the placenta which could eventually lead to premature labor. IMPACT: We validated upregulation of HSPA5 in placentas from spontaneous preterm birth. HSPA5 was not upregulated at transcriptional level which suggests that it may be regulated post-translationally. Silencing HSPA5 in a human trophoblast-derived cell line suggested that HSPA5 promotes expression of proinflammatory cytokines. The emerging inflammation could lead to spontaneous preterm labor. Identifying inflammatory pathways and factors associated with spontaneous preterm birth increases knowledge of the molecular mechanisms of premature labor. This could provide cues to predict imminent premature labor and lead to information about how to safely maintain pregnancies.


Obstetric Labor, Premature , Premature Birth , Humans , Pregnancy , Infant, Newborn , Female , Premature Birth/genetics , Placenta/metabolism , Endoplasmic Reticulum Chaperone BiP , Proteomics , RNA, Messenger/metabolism
4.
BMC Med ; 20(1): 141, 2022 04 28.
Article En | MEDLINE | ID: mdl-35477570

BACKGROUND: Preterm birth is defined as live birth before 37 completed weeks of pregnancy, and it is a major problem worldwide. The molecular mechanisms that lead to onset of spontaneous preterm birth are incompletely understood. Prediction and evaluation of the risk of preterm birth is challenging as there is a lack of accurate biomarkers. In this study, our aim was to identify placental proteins that associate with spontaneous preterm birth. METHODS: We analyzed the proteomes from placentas to identify proteins that associate with both gestational age and spontaneous labor. Next, rare and potentially damaging gene variants of the identified protein candidates were sought for from our whole exome sequencing data. Further experiments we performed on placental samples and placenta-associated cells to explore the location and function of the spontaneous preterm labor-associated proteins in placentas. RESULTS: Exome sequencing data revealed rare damaging variants in SERPINA1 in families with recurrent spontaneous preterm deliveries. Protein and mRNA levels of alpha-1 antitrypsin/SERPINA1 from the maternal side of the placenta were downregulated in spontaneous preterm births. Alpha-1 antitrypsin was expressed by villous trophoblasts in the placenta, and immunoelectron microscopy showed localization in decidual fibrinoid deposits in association with specific extracellular proteins. siRNA knockdown in trophoblast-derived HTR8/SVneo cells revealed that SERPINA1 had a marked effect on regulation of the actin cytoskeleton pathway, Slit-Robo signaling, and extracellular matrix organization. CONCLUSIONS: Alpha-1 antitrypsin is a protease inhibitor. We propose that loss of the protease inhibition effects of alpha-1 antitrypsin renders structures critical to maintaining pregnancy susceptible to proteases and inflammatory activation. This may lead to spontaneous premature birth.


Obstetric Labor, Premature , Premature Birth , Exons , Female , Humans , Infant, Newborn , Obstetric Labor, Premature/genetics , Placenta/metabolism , Pregnancy , Premature Birth/genetics , Proteomics , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
5.
Sci Rep ; 11(1): 17115, 2021 08 24.
Article En | MEDLINE | ID: mdl-34429451

Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal-fetal tolerance and promote labor.


HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Premature Birth/genetics , RNA-Binding Proteins/genetics , Receptors, Androgen/genetics , Adult , Female , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Humans , Infant, Premature , Male , Molecular Chaperones/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Placenta/metabolism , Pregnancy , RNA-Binding Proteins/metabolism , Receptors, Androgen/metabolism , Transcriptome
6.
PLoS Genet ; 15(6): e1008107, 2019 06.
Article En | MEDLINE | ID: mdl-31194736

Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.


Fetal Development/genetics , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Premature Birth/genetics , Receptors, Immunologic/genetics , Female , Fetus , Finland , Gene Expression Regulation/genetics , Gene Frequency , Genome-Wide Association Study , Humans , Placenta/pathology , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy-Specific beta 1-Glycoproteins/genetics , Premature Birth/pathology , Signal Transduction , Trophoblasts/pathology , Roundabout Proteins
...