Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 88(13): 8904-8914, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37327488

RESUMEN

Kinetic profiling has shown that a (DHQD)2PHAL-catalyzed intermolecular asymmetric alkene bromoesterification reaction is inhibited by primary amides, imides, hydantoins, and secondary cyclic amides, which are byproducts of common stoichiometric bromenium ion sources. Two approaches to resolving the inhibition are presented, enabling the (DHQD)2PHAL loading to be dropped from 10 to 1 mol % while maintaining high bromoester conversions in 8 h or less. Iterative post-reaction recrystallizations enabled a homochiral bromonaphthoate ester to be synthesized using only 1 mol % (DHQD)2PHAL.


Asunto(s)
Alquenos , Amidas , Catálisis , Cinética , Imidas
2.
Adv Synth Catal ; 360(6): 1066-1071, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29706853

RESUMEN

Despite the ever-broadening applications of main-group 'frustrated Lewis pair' (FLP) chemistry to both new and established reactions, their typical intolerance of water, especially at elevated temperatures (>100 °C), represents a key barrier to their mainstream adoption. Herein we report that FLPs based on the Lewis acid iPr3SnOTf are moisture tolerant in the presence of moderately strong nitrogenous bases, even under high temperature regimes, allowing them to operate as simple and effective catalysts for the reductive amination of organic carbonyls, including for challenging bulky amine and carbonyl substrate partners.

3.
ACS Comb Sci ; 18(2): 130-7, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26798986

RESUMEN

A high-throughput optimization and subsequent scale-up methodology has been used for the synthesis of conductive tin-doped indium oxide (known as ITO) nanoparticles. ITO nanoparticles with up to 12 at % Sn were synthesized using a laboratory scale (15 g/hour by dry mass) continuous hydrothermal synthesis process, and the as-synthesized powders were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy. Under standard synthetic conditions, either the cubic In2O3 phase, or a mixture of InO(OH) and In2O3 phases were observed in the as-synthesized materials. These materials were pressed into compacts and heat-treated in an inert atmosphere, and their electrical resistivities were then measured using the Van der Pauw method. Sn doping yielded resistivities of ∼ 10(-2) Ω cm for most samples with the lowest resistivity of 6.0 × 10(-3) Ω cm (exceptionally conductive for such pressed nanopowders) at a Sn concentration of 10 at %. Thereafter, the optimized lab-scale composition was scaled-up using a pilot-scale continuous hydrothermal synthesis process (at a rate of 100 g/hour by dry mass), and a comparable resistivity of 9.4 × 10(-3) Ω cm was obtained. The use of the synthesized TCO nanomaterials for thin film fabrication was finally demonstrated by deposition of a transparent, conductive film using a simple spin-coating process.


Asunto(s)
Conductividad Eléctrica , Ensayos Analíticos de Alto Rendimiento/métodos , Compuestos de Estaño/síntesis química , Nanopartículas , Proyectos Piloto , Polvos , Compuestos de Estaño/química
4.
Philos Trans A Math Phys Eng Sci ; 368(1927): 4331-49, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20732890

RESUMEN

High-throughput continuous hydrothermal flow synthesis has been used as a rapid and efficient synthetic route to produce a range of crystalline nanopowders in the Ce-Zn oxide binary system. High-resolution powder X-ray diffraction data were obtained for both as-prepared and heat-treated (850 degrees C for 10 h in air) samples using the new robotic beamline I11, located at Diamond Light Source. The influence of the sample composition on the crystal structure and on the optical and physical properties was studied. All the nanomaterials were characterized using Raman spectroscopy, UV-visible spectrophotometry, Brunauer-Emmett-Teller surface area and elemental analysis (via energy-dispersive X-ray spectroscopy). Initially, for 'as-prepared' Ce(1-x)Zn(x)O(y), a phase-pure cerium oxide (fluorite) structure was obtained for nominal values of x=0.1 and 0.2. Biphasic mixtures were obtained for nominal values of x in the range of 0.3-0.9 (inclusive). High-resolution transmission electron microscopy images revealed that the phase-pure nano-CeO(2) (x=0) consisted of ca 3.7 nm well-defined nanoparticles. The nanomaterials produced herein generally had high surface areas (greater than 150 m(2) g(-1)) and possessed combinations of particle properties (e.g. bandgap, crystallinity, size, etc.) that were unobtainable or difficult to achieve by other more conventional synthetic methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...