Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 2323, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484119

RESUMEN

Adverse prognosis in Ewing sarcoma (ES) is associated with the presence of metastases, particularly in bone, tumor hypoxia and chromosomal instability (CIN). Yet, a mechanistic link between these factors remains unknown. We demonstrate that in ES, tumor hypoxia selectively exacerbates bone metastasis. This process is triggered by hypoxia-induced stimulation of the neuropeptide Y (NPY)/Y5 receptor (Y5R) pathway, which leads to RhoA over-activation and cytokinesis failure. These mitotic defects result in the formation of polyploid ES cells, the progeny of which exhibit high CIN, an ability to invade and colonize bone, and a resistance to chemotherapy. Blocking Y5R in hypoxic ES tumors prevents polyploidization and bone metastasis. Our findings provide evidence for the role of the hypoxia-inducible NPY/Y5R/RhoA axis in promoting genomic changes and subsequent osseous dissemination in ES, and suggest that targeting this pathway may prevent CIN and disease progression in ES and other cancers rich in NPY and Y5R.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Neoplasias Óseas/genética , Inestabilidad Cromosómica , Humanos , Hipoxia , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Sarcoma de Ewing/patología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
3.
Lab Invest ; 100(1): 38-51, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31409888

RESUMEN

Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Treatment of the disease represents an unsolved clinical problem, as survival of patients with aggressive form of NB remains below 50%. Despite recent identification of numerous potential therapeutic targets, clinical trials validating them are challenging due to the rarity of the disease and its high patient-to-patient heterogeneity. Hence, there is a need for the accurate preclinical models that would allow testing novel therapeutic approaches and prioritizing the clinical studies, preferentially in personalized way. Here, we propose using conditional reprogramming (CR) technology for rapid development of primary NB cell cultures that could become a new model for such tests. This newly established method allowed for indefinite propagation of normal and tumor cells of epithelial origin in an undifferentiated state by their culture in the presence of Rho-associated kinase (ROCK) inhibitor, Y-27632, and irradiated mouse feeder cells. Using a modification of this approach, we isolated cell lines from tumors arising in the TH-MYCN murine transgenic model of NB (CR-NB). The cells were positive for neuronal markers, including Phox2B and peripherin and consisted of two distinct populations: mesenchymal and adrenergic expressing corresponding markers of their specific lineage. This heterogeneity of the CR-NB cells mimicked the different tumor cell phenotypes in TH-MYCN tumor tissues. The CR-NB cells preserved anchorage-independent growth capability and were successfully passaged, frozen and biobanked. Further studies are required to determine the utility of this method for isolation of human NB cultures, which can become a novel model for basic, translational, and clinical research, including individualized drug testing.


Asunto(s)
Línea Celular Tumoral , Neuroblastoma/patología , Animales , Biomarcadores/metabolismo , Técnicas de Reprogramación Celular , Humanos , Ratones Transgénicos , Neoplasias Experimentales , Neuroblastoma/metabolismo , Fenotipo , Ratas
4.
Adv Physiol Educ ; 41(3): 324-331, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679566

RESUMEN

Scientific writing requires a distinct style and tone, whether the writing is intended for an undergraduate assignment or publication in a peer-reviewed journal. From the first to the final draft, scientific writing is an iterative process requiring practice, substantial feedback from peers and instructors, and comprehensive proofreading on the part of the writer. Teaching writing or proofreading is not common in university settings. Here, we present a collection of common undergraduate student writing mistakes and put forth suggestions for corrections as a first step toward proofreading and enhancing readability in subsequent draft versions. Additionally, we propose specific strategies pertaining to word choice, structure, and approach to make products more fluid and focused for an appropriate target audience.


Asunto(s)
Ciencia/educación , Escritura , Humanos , Estudiantes , Universidades/normas
5.
Am J Pathol ; 186(11): 3040-3053, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27743558

RESUMEN

Neuroblastoma (NB) is a pediatric malignant neoplasm of sympathoadrenal origin. Challenges in its management include stratification of this heterogeneous disease and a lack of both adequate treatments for high-risk patients and noninvasive biomarkers of disease progression. Our previous studies have identified neuropeptide Y (NPY), a sympathetic neurotransmitter expressed in NB, as a potential therapeutic target for these tumors by virtue of its Y5 receptor (Y5R)-mediated chemoresistance and Y2 receptor (Y2R)-mediated proliferative and angiogenic activities. The goal of this study was to determine the clinical relevance and utility of these findings. Expression of NPY and its receptors was evaluated in corresponding samples of tumor RNA, tissues, and sera from 87 patients with neuroblastic tumors and in tumor tissues from the TH-MYCN NB mouse model. Elevated serum NPY levels correlated with an adverse clinical presentation, poor survival, metastasis, and relapse, whereas strong Y5R immunoreactivity was a marker of angioinvasive tumor cells. In NB tissues from TH-MYCN mice, high immunoreactivity of both NPY and Y5R marked angioinvasive NB cells. Y2R was uniformly expressed in undifferentiated tumor cells, which supports its previously reported role in NB cell proliferation. Our findings validate NPY as a therapeutic target for advanced NB and implicate the NPY/Y5R axis in disease dissemination. The correlation between elevated systemic NPY and NB progression identifies serum NPY as a novel NB biomarker.


Asunto(s)
Neuroblastoma/metabolismo , Neuropéptido Y/metabolismo , Adolescente , Animales , Biomarcadores/metabolismo , Proliferación Celular , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuropéptido Y/genética , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo
6.
J Vis Exp ; (118)2016 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-28060251

RESUMEN

Hypoxia has been implicated in the metastasis of Ewing sarcoma (ES) by clinical observations and in vitro data, yet direct evidence for its pro-metastatic effect is lacking and the exact mechanisms of its action are unclear. Here, we report an animal model that allows for direct testing of the effects of tumor hypoxia on ES dissemination and investigation into the underlying pathways involved. This approach combines two well-established experimental strategies, orthotopic xenografting of ES cells and femoral artery ligation (FAL), which induces hindlimb ischemia. Human ES cells were injected into the gastrocnemius muscles of SCID/beige mice and the primary tumors were allowed to grow to a size of 250 mm3. At this stage either the tumors were excised (control group) or the animals were subjected to FAL to create tumor hypoxia, followed by tumor excision 3 days later. The efficiency of FAL was confirmed by a significant increase in binding of hypoxyprobe-1 in the tumor tissue, severe tumor necrosis and complete inhibition of primary tumor growth. Importantly, despite these direct effects of ischemia, an enhanced dissemination of tumor cells from the hypoxic tumors was observed. This experimental strategy enables comparative analysis of the metastatic properties of primary tumors of the same size, yet significantly different levels of hypoxia. It also provides a new platform to further assess the mechanistic basis for the hypoxia-induced alterations that occur during metastatic tumor progression in vivo. In addition, while this model was established using ES cells, we anticipate that this experimental strategy can be used to test the effect of hypoxia in other sarcomas, as well as tumors orthotopically implanted in sites with a well-defined blood supply route.


Asunto(s)
Hipoxia/patología , Metástasis de la Neoplasia/patología , Sarcoma de Ewing/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias
7.
Neuropeptides ; 55: 127-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26431933

RESUMEN

OBJECTIVE: To determine if preeclampsia (PE) is associated with dysregulation of the neuropeptide Y (NPY) system. METHODS: The study enrolled 114 subjects either with normal pregnancy (NP) or with PE. Systolic blood pressure (SBP) was collected from patients using a standard sphygmomanometer. The PE patients were divided into two groups based on the gestational age (GA) at delivery - placental PE (PLPE, GA <34 weeks) or maternal PE (MTPE, GA ≥34 weeks). NPY was measured in platelet rich plasma (PRP), platelet poor plasma (PPP) and in the serum of NP and PE patients utilizing radioimmunoassay. Serum levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) were measured in NP and PE subjects by ELISA. RESULTS: SBP was higher in PE compared to NP. Circulating NPY in serum and PRP, as well as NPY content per 100,000 platelets, but not its concentrations in PPP, were elevated in PE, as compared to NP. The highest NPY concentrations were observed in sera and PRP of patients with MTPE. PE patients had also elevated levels of sFlt-1, as compared to NP, although no difference between PLPE and MTPL groups were observed. There was no increase in P1GF in PE patients. CONCLUSION: Systemic NPY is elevated in PE patients, as compared to NP. This increase is observed in blood fractions containing platelets, suggesting accumulation of the peptide in these cells. NPY concentrations are particularly high in patients with MTPE, underlying differences in etiology between PLPE and MTPE. Our study implicates NPY as a potential target in antihypertensive therapies for PE patients.


Asunto(s)
Neuropéptido Y/sangre , Placenta/metabolismo , Preeclampsia/metabolismo , Estrés Fisiológico/fisiología , Plaquetas/metabolismo , Presión Sanguínea/fisiología , Femenino , Humanos , Proyectos Piloto , Factor de Crecimiento Placentario/sangre , Embarazo
8.
Oncotarget ; 6(9): 7151-65, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25714031

RESUMEN

Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics.


Asunto(s)
Neoplasias Óseas/metabolismo , Neuropéptido Y/química , Sarcoma de Ewing/metabolismo , Animales , Neoplasias Óseas/patología , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Movimiento Celular , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Humanos , Hipoxia , Neoplasias Pulmonares/secundario , Ratones , Ratones SCID , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteínas de Fusión Oncogénica/metabolismo , Fenotipo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/patología
9.
Cancer ; 121(5): 697-707, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25387699

RESUMEN

BACKGROUND: Ewing sarcoma (ES) is driven by fusion of the Ewing sarcoma breakpoint region 1 gene (EWSR1) with an E26 transformation-specific (ETS) transcription factor (EWS-ETS), most often the Friend leukemia integration 1 transcription factor (FLI1). Neuropeptide Y (NPY) is an EWS-FLI1 transcriptional target; it is highly expressed in ES and exerts opposing effects, ranging from ES cell death to angiogenesis and cancer stem cell propagation. The functions of NPY are regulated by dipeptidyl peptidase IV (DPPIV), a hypoxia-inducible enzyme that cleaves the peptide and activates its growth-promoting actions. The objective of this study was to determine the clinically relevant functions of NPY by identifying the associations between patients' ES phenotype and their NPY concentrations and DPP activity. METHODS: NPY concentrations and DPP activity were measured in serum samples from 223 patients with localized ES and 9 patients with metastatic ES provided by the Children's Oncology Group. RESULTS: Serum NPY levels were elevated in ES patients compared with the levels in a healthy control group and an osteosarcoma patient population, and the elevated levels were independent of EWS-ETS translocation type. Significantly higher NPY concentrations were detected in patients with ES who had tumors of pelvic and bone origin. A similar trend was observed in patients with metastatic ES. There was no effect of NPY on survival in patients with localized ES. DPP activity in sera from patients with ES did not differ significantly from that in healthy controls and patients with osteosarcoma. However, high DPP levels were associated with improved survival. CONCLUSIONS: Systemic NPY levels are elevated in patients with ES, and these high levels are associated with unfavorable disease features. DPPIV in serum samples from patients with ES is derived from nontumor sources, and its high activity is correlated with improved survival.


Asunto(s)
Neoplasias Óseas/sangre , Dipeptidil Peptidasa 4/sangre , Neuropéptido Y/sangre , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/sangre , Adolescente , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Línea Celular Tumoral , Niño , Dipeptidil Peptidasa 4/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Osteosarcoma/sangre , Osteosarcoma/genética , ARN Mensajero/genética , Receptores de Neuropéptido Y/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/mortalidad , Trasplante Heterólogo
10.
Oncotarget ; 4(12): 2487-501, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24318733

RESUMEN

Ewing sarcoma (ES) is an aggressive malignancy driven by an oncogenic fusion protein, EWS-FLI1. Neuropeptide Y (NPY), and two of its receptors, Y1R and Y5R are up-regulated by EWS-FLI1 and abundantly expressed in ES cells. Paradoxically, NPY acting via Y1R and Y5R stimulates ES cell death. Here, we demonstrate that these growth-inhibitory actions of NPY are counteracted by hypoxia, which converts the peptide to a growth-promoting factor. In ES cells, hypoxia induces another NPY receptor, Y2R, and increases expression of dipeptidyl peptidase IV (DPPIV), an enzyme that cleaves NPY to a shorter form, NPY3-36. This truncated peptide no longer binds to Y1R and, therefore, does not stimulate ES cell death. Instead, NPY3-36 acts as a selective Y2R/Y5R agonist. The hypoxia-induced increase in DPPIV activity is most evident in a population of ES cells with high aldehyde dehydrogenase (ALDH) activity, rich in cancer stem cells (CSCs). Consequently, NPY, acting via Y2R/Y5Rs, preferentially stimulates proliferation and migration of hypoxic ALDHhigh cells. Hypoxia also enhances the angiogenic potential of ES by inducing Y2Rs in endothelial cells and increasing the release of its ligand, NPY3-36, from ES cells. In summary, hypoxia acts as a molecular switch shifting NPY activity away from Y1R/Y5R-mediated cell death and activating the Y2R/Y5R/DPPIV/NPY3-36 axis, which stimulates ES CSCs and promotes angiogenesis. Hypoxia-driven actions of the peptide such as these may contribute to ES progression. Due to the receptor-specific and multifaceted nature of NPY actions, these findings may inform novel therapeutic approaches to ES.


Asunto(s)
Hipoxia de la Célula/fisiología , Neuropéptido Y/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Dipeptidil Peptidasa 4/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Receptores de Neuropéptido Y/antagonistas & inhibidores , Sarcoma de Ewing/irrigación sanguínea , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
11.
FASEB J ; 27(6): 2244-55, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457218

RESUMEN

We previously reported that the sympathetic neurotransmitter neuropeptide Y (NPY) is potently angiogenic, primarily through its Y2 receptor, and that endogenous NPY is crucial for capillary angiogenesis in rodent hindlimb ischemia. Here we sought to identify the source of NPY responsible for revascularization and its mechanisms of action. At d 3, NPY(-/-) mice demonstrated delayed recovery of blood flow and limb function, consistent with impaired collateral conductance, while ischemic capillary angiogenesis was reduced (~70%) at d 14. This biphasic temporal response was confirmed by 2 peaks of NPY activation in rats: a transient early increase in neuronally derived plasma NPY and increase in platelet NPY during late-phase recovery. Compared to NPY-null platelets, collagen-activated NPY-rich platelets were more mitogenic (~2-fold vs. ~1.6-fold increase) for human microvascular endothelial cells, and Y2/Y5 receptor antagonists ablated this difference in proliferation. In NPY(+/+) mice, ischemic angiogenesis was prevented by platelet depletion and then restored by transfusion of platelets from NPY(+/+) mice, but not NPY(-/-) mice. In thrombocytopenic NPY(-/-) mice, transfusion of wild-type platelets fully restored ischemia-induced angiogenesis. These findings suggest that neuronally derived NPY accelerates the early response to femoral artery ligation by promoting collateral conductance, while platelet-derived NPY is critical for sustained capillary angiogenesis.


Asunto(s)
Plaquetas/metabolismo , Isquemia/sangre , Neovascularización Fisiológica , Neuropéptido Y/fisiología , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Miembro Posterior , Humanos , Isquemia/genética , Isquemia/fisiopatología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Neovascularización Fisiológica/genética , Neuropéptido Y/deficiencia , Neuropéptido Y/genética , Ratas , Ratas Wistar
12.
Am J Pathol ; 179(5): 2220-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21945411

RESUMEN

Fibroblast growth factors (FGFs) participate in embryonic development, in maintenance of tissue homeostasis in the adult, and in various diseases. FGF-binding proteins (FGFBP) are secreted proteins that chaperone FGFs stored in the extracellular matrix to their receptor, and can thus modulate FGF signaling. FGFBP1 (alias BP1, FGF-BP1, or HBp17) expression is required for embryonic survival, can modulate FGF-dependent vascular permeability in embryos, and is an angiogenic switch in human cancers. To determine the function of BP1 in vivo, we generated tetracycline-regulated conditional BP1 transgenic mice. BP1-expressing adult mice are viable, fertile, and phenotypically indistinguishable from their littermates. Induction of BP1 expression increased mouse primary fibroblast motility in vitro, increased angiogenic sprouting into subcutaneous matrigel plugs in animals and accelerated the healing of excisional skin wounds. FGF-receptor kinase inhibitors blocked these effects. Healing skin wounds showed increased macrophage invasion as well as cell proliferation after BP1 expression. Also, BP1 expression increased angiogenesis during the healing of skin wounds as well as after ischemic injury to hindlimb skeletal muscles. We conclude that BP1 can enhance FGF effects that are required for the healing and repair of injured tissues in adult animals.


Asunto(s)
Proteínas Portadoras/metabolismo , Fibroblastos/metabolismo , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Animales , Proteínas Portadoras/genética , Movimiento Celular , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/farmacología , Miembro Posterior/irrigación sanguínea , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Isquemia/metabolismo , Isquemia/fisiopatología , Macrófagos/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Recombinantes , Piel/lesiones , Transgenes/fisiología
13.
J Biol Chem ; 286(31): 27494-505, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21680731

RESUMEN

Ewing sarcoma family of tumors (ESFT) is a group of aggressive pediatric malignancies driven by the EWS-FLI1 fusion protein, an aberrant transcription factor up-regulating specific target genes, such as neuropeptide Y (NPY) and its Y1 and Y5 receptors (Y5Rs). Previously, we have shown that both exogenous NPY and endogenous NPY stimulate ESFT cell death via its Y1 and Y5Rs. Here, we demonstrate that this effect is prevented by dipeptidyl peptidases (DPPs), which cleave NPY to its shorter form, NPY(3-36), not active at Y1Rs. We have shown that NPY-induced cell death can be abolished by overexpression of DPPs and enhanced by their down-regulation. Both NPY treatment and DPP blockade activated the same cell death pathway mediated by poly(ADP-ribose) polymerase (PARP-1) and apoptosis-inducing factor (AIF). Moreover, the decrease in cell survival induced by DPP inhibition was blocked by Y1 and Y5R antagonists, confirming its dependence on endogenous NPY. Interestingly, similar levels of NPY-driven cell death were achieved by blocking membrane DPPIV and cytosolic DPP8 and DPP9. Thus, this is the first evidence of these intracellular DPPs cleaving releasable peptides, such as NPY, in live cells. In contrast, another membrane DPP, fibroblast activation protein (FAP), did not affect NPY actions. In conclusion, DPPs act as survival factors for ESFT cells and protect them from cell death induced by endogenous NPY. This is the first demonstration that intracellular DPPs are involved in regulation of ESFT growth and may become potential therapeutic targets for these tumors.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Sarcoma de Ewing/metabolismo , Línea Celular Tumoral , Humanos , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma de Ewing/enzimología , Sarcoma de Ewing/patología
14.
Ann N Y Acad Sci ; 1148: 232-7, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19120115

RESUMEN

In response to stress, some people lose while others gain weight. This is believed to be due to either increased beta-adrenergic activation, the body's main fat-burning mechanism, or increased intake of sugar- and fat-rich "comfort foods." A high-fat, high-sugar (HFS) diet alone, however, cannot account for the epidemic of obesity, and chronic stress alone tends to lower adiposity in mice. Here we discuss how chronic stress, when combined with an HFS diet, leads to abdominal obesity by releasing a sympathetic neurotransmitter, neuropeptide Y (NPY), directly into the adipose tissue. In vitro, when "stressed" with dexamethasone, sympathetic neurons shift toward expressing more NPY, which stimulates endothelial cell (angiogenesis) and preadipocyte proliferation, differentiation, and lipid-filling (adipogenesis) by activating the same NPY-Y2 receptors (Y2Rs). In vivo, chronic stress, consisting of cold water or aggression in HFS-fed mice, stimulates the release of NPY and the expression of Y2Rs in visceral fat, increasing its growth by 50% in 2 weeks. After 3 months, this results in metabolic syndrome-like symptoms with abdominal obesity, inflammation, hyperlipidemia, hyperinsulinemia, glucose intolerance, hepatic steatosis, and hypertension. Remarkably, local intra-fat Y2R inhibition pharmacologically or via adenoviral Y2R knock-down reverses or prevents fat accumulation and metabolic complications. These studies demonstrated for the first time that chronic stress, via the NPY-Y2R pathway, amplifies and accelerates diet-induced obesity and the metabolic syndrome. Our findings also suggest the use of local administration of Y2R antagonists for treatment of obesity and NPY-Y2 agonists for fat augmentation in other clinical applications.


Asunto(s)
Dieta , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Síndrome Metabólico , Neuropéptido Y/metabolismo , Obesidad , Estrés Psicológico/complicaciones , Tejido Adiposo/metabolismo , Animales , Glucocorticoides/metabolismo , Humanos , Síndrome Metabólico/etiología , Síndrome Metabólico/fisiopatología , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Receptores de Neuropéptido Y/metabolismo , Aumento de Peso
15.
Curr Top Med Chem ; 7(17): 1704-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17979779

RESUMEN

Neuropeptide Y (NPY) is a sympathetic neurotransmitter that acts on multiple receptors (Y1-Y6) and exerts a variety of cardiovascular effects. Originally known as a vasoconstrictor acting on Y1 receptors, NPY is also a potent angiogenic factor as well as a powerful stimulator of vascular smooth muscle proliferation and atherogenesis in vitro and in vivo. These two types of vascular remodeling are predominantly mediated by Y2/Y5 and Y1 receptors respectively, but evidence suggests that all receptors are activated in both conditions. A strategy to inhibit neointima formation and atherosclerotic lesions without impairing ischemic angiogenesis and collateral vessel formation has been a major challenge to overcome. Studies in rodents show that Y1 receptor antagonist inhibits angioplasty-induced atherosclerotic-like vascular remodeling, without affecting ischemic revascularization. Conversely, Y2 receptor activation appears to be sufficient to stimulate angiogenesis in various animal models. Thus, the use of selective receptor agonists to promote angiogenesis through the Y2 receptor while antagonizing the pro-atherosclerotic and pro-stenotic effects with Y1 receptor-selective antagonists may help to successfully treat vascular remodeling in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Neuropéptido Y/fisiología , Receptores de Neuropéptido Y/fisiología , Remodelación Ventricular/fisiología , Proteínas Angiogénicas/fisiología , Animales , Humanos
16.
Am J Physiol Renal Physiol ; 293(6): F1811-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17804485

RESUMEN

Neuropeptide Y (NPY) is coreleased with norepinephrine and stimulates vasoconstriction, vascular and cardiomyocyte hypertrophy via Y1 receptors (R) and angiogenesis via Y2R. Although circulating NPY is elevated in heart failure, NPY's role remains unclear. Activation of the NPY system was determined in Wistar rats with the aortocaval (A-V) fistula model of high-output heart failure. Plasma NPY levels were elevated in A-V fistula animals (115.7 +/- 15.3 vs. 63.1 +/- 17.4 pM in sham, P < 0.04). Animals either compensated [urinary Na(+) excretion returning to normal with moderate disease (COMP)] or remained decompensated with severe cardiac and renal failure (urinary Na(+) excretion <0.5 meq/day), increased heart weight, decreased mean arterial pressure and renal blood flow (RBF), and death within 5-7 days (DECOMP). Cardiac and renal tissue NPY decreased with heart failure, proportionate to the severity of renal complications. Cardiac and renal Y1R mRNA expression also decreased (1.5-fold, P < 0.005) in rats with heart failure. In contrast, Y2R expression increased up to 72-fold in the heart and 5.7-fold in the kidney (P < 0.001) proportionate to severity of heart failure and cardiac hypertrophy. Changes in receptor expression were confirmed since the Y1R agonist, [Leu31, Pro34]-NPY, had no effect on RBF, whereas the Y2R agonist (13-36)-NPY increased RBF to compensate for disease. Thus, in this model of heart failure, cardiac and renal NPY Y1 receptors decrease and Y2 receptors increase, suggesting an increased effect of NPY on the receptors involved in cardiac remodeling and angiogenesis, and highlighting an important regulatory role of NPY in congestive heart failure.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Riñón/metabolismo , Miocardio/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Northern Blotting , Cardiomegalia/metabolismo , Cardiomegalia/patología , Expresión Génica/fisiología , Masculino , Radioinmunoensayo , Ratas , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/genética , Circulación Renal/efectos de los fármacos , Sodio/orina
17.
Nat Med ; 13(7): 803-11, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17603492

RESUMEN

The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.


Asunto(s)
Dieta , Neuropéptido Y/genética , Obesidad/metabolismo , Estrés Fisiológico/metabolismo , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Grasas de la Dieta , Eliminación de Gen , Regulación de la Expresión Génica , Masculino , Síndrome Metabólico , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Regulación hacia Arriba
18.
Circulation ; 111(6): 782-90, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15699255

RESUMEN

BACKGROUND: Retinoic acid has antimitogenic effects on smooth muscle cells. Studies on the systemic circulation suggest that it may reduce vascular thickening. Relationships between retinoids and pulmonary hypertension/pulmonary vascular remodeling, however, have not been explored. Thus, the present study examined retinoid levels in plasma of patients with idiopathic pulmonary arterial hypertension and the effects of retinoic acid on human pulmonary artery smooth muscle cell growth. METHODS AND RESULTS: We measured retinoid levels by gas chromatograph-mass spectrometer technique in plasma of idiopathic pulmonary arterial hypertension patients and in age- and sex-matched healthy control subjects. Patients had significantly lower levels of all-trans retinoic acid and 13-cis retinoic acid than control subjects but similar 9-cis retinoic acid and retinol levels. In cultured human pulmonary artery smooth muscle cells, all-trans retinoic acid suppressed serotonin-induced cell growth. These cells were found to express the retinoid acid receptors RARalpha, RARbeta, RARgamma, RXRalpha, and RXRbeta. Gene array analysis showed that retinoic acid induces the expression of GADD45A, a known cell growth suppressor. Contrary to expectations, plasma from pulmonary hypertension patients suppressed cell growth, likely influenced by factors other than retinoids. CONCLUSIONS: Idiopathic pulmonary arterial hypertension patients have reduced retinoic acid levels, and retinoic acid treatment can elicit growth-inhibitory signals in pulmonary artery smooth muscle cells in vitro. Thus, retinoic acid may influence pulmonary vascular remodeling in humans.


Asunto(s)
Hipertensión Pulmonar/sangre , Retinoides/sangre , Adulto , Anciano , Alitretinoína , Carotenoides/sangre , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/fisiología , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Isotretinoína/sangre , Masculino , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/química , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Plasma/metabolismo , Estudios Prospectivos , Arteria Pulmonar/citología , Receptores de Ácido Retinoico/biosíntesis , Serotonina/metabolismo , Tocoferoles/sangre , Tretinoina/sangre , Tretinoina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...