Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 151(3): 292-315, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30397012

RESUMEN

Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors.


Asunto(s)
Proteínas de Artrópodos/farmacología , Activación del Canal Iónico , Canales de Potasio Shab/metabolismo , Venenos de Araña/farmacología , Regulación Alostérica , Sitio Alostérico , Animales , Proteínas de Artrópodos/química , Células CHO , Cricetinae , Cricetulus , Unión Proteica , Ratas , Canales de Potasio Shab/agonistas , Canales de Potasio Shab/química , Venenos de Araña/química
2.
ACS Nano ; 12(5): 4469-4477, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29608274

RESUMEN

Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover nonquenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete with the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells.


Asunto(s)
Alquinos/química , Azidas/química , Cobre/química , Puntos Cuánticos/química , Estructura Molecular , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
3.
PLoS Comput Biol ; 11(9): e1004398, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26325167

RESUMEN

Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.


Asunto(s)
Biología Computacional/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Ingeniería de Proteínas/métodos , Proteínas de la Membrana/genética , Conformación Proteica
5.
Elife ; 4: e06774, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25948544

RESUMEN

Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/química , Canales Iónicos Sensibles al Ácido/química , Proteínas de Artrópodos/química , Neurotoxinas/química , Péptidos/química , Canales de Potasio Shab/química , Venenos de Araña/química , Bloqueadores del Canal Iónico Sensible al Ácido/síntesis química , Bloqueadores del Canal Iónico Sensible al Ácido/toxicidad , Canales Iónicos Sensibles al Ácido/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/síntesis química , Proteínas de Artrópodos/toxicidad , Expresión Génica , Activación del Canal Iónico , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Neurotoxinas/síntesis química , Neurotoxinas/toxicidad , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Péptidos/síntesis química , Péptidos/toxicidad , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Homología de Secuencia de Aminoácido , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Venenos de Araña/síntesis química , Venenos de Araña/toxicidad , Arañas , Liposomas Unilamelares/química , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 111(44): E4789-96, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25331865

RESUMEN

Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling.


Asunto(s)
Proteínas de Artrópodos/farmacología , Dendrímeros/farmacología , Colorantes Fluorescentes/farmacología , Canales de Potasio Shab/metabolismo , Transducción de Señal/efectos de los fármacos , Venenos de Araña/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Activación del Canal Iónico , Unión Proteica , Canales de Potasio Shab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...