Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Protistol ; 93: 126053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350179

RESUMEN

We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.


Asunto(s)
Quitridiomicetos , Dinoflagelados , Parásitos , Animales , Dinoflagelados/genética , Ecosistema , Quitridiomicetos/genética , Filogenia
2.
ISME Commun ; 3(1): 103, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752353

RESUMEN

This study aims to investigate the temporal dynamics of the epiphytic protist community on macroalgae, during the summer months, with a specific focus on fungi, and the interactions between zoosporic chytrid parasites and the proliferation of the dinoflagellates. We employed a combination of environmental sequencing techniques, incubation of natural samples, isolation of target organisms and laboratory experiments. Metabarcoding sequencing revealed changes in the dominant members of the epiphytic fungal community. Initially, fungi comprised < 1% of the protist community, mostly accounted for by Basidiomycota and Ascomycota, but with the emergence of Chytridiomycota during the mature phase of the biofilm, the fungal contribution increased to almost 30%. Chytridiomycota became dominant in parallel with an increase in the relative abundance of dinoflagellates in the community. Microscopy observations showed a general presence of chytrids following the peak proliferation of the dinoflagellate Ostreopsis sp., with the parasite, D. arenysensis as the dominant chytrid. The maximum infection prevalence was 2% indicating host-parasite coexistence. To further understand the in-situ prevalence of chytrids, we characterised the dynamics of the host abundance and prevalence of chytrids through co-culture. These laboratory experiments revealed intraspecific variability of D. arenysensis in its interaction with Ostreopsis, exhibiting a range from stable coexistence to the near-extinction of the host population. Moreover, while chytrids preferentially parasitized dinoflagellate cells, one of the strains examined displayed the ability to utilize pollen as a resource to maintain its viability, thus illustrating a facultative parasitic lifestyle. Our findings not only enrich our understanding of the diversity, ecology, and progression of epiphytic microalgal and fungal communities on Mediterranean coastal macroalgae, but they also shed light on the presence of zoosporic parasites in less-explored benthic habitats.

3.
An. pediatr. (2003. Ed. impr.) ; 97(5): 300-309, nov. 2022. tab, graf
Artículo en Español | IBECS | ID: ibc-211321

RESUMEN

Introducción: La etiología de la enfermedad de Kawasaki (EK) sigue siendo desconocida. Varios estudios han relacionado el microbioma humano con algunas enfermedades. Sin embargo, los estudios sobre el microbioma respiratorio en EK son limitados. Este estudio intenta profundizar en las causas y procesos que predisponen al desarrollo de la EK. Métodos: Estudio de casos y controles en el que se compara el microbioma respiratorio de pacientes con EK con el de niños sanos. La región V3-V4 del gen bacteriano del ARNr 16S y 16 virus respiratorios se analizaron mediante reacción en cadena de la polimerasa en tiempo real. Se utilizó la base de datos RDP (Ribosomal Database Project) versión 11.5 (asignación taxonómica). Resultados: Se incluyeron 11casos y 11 controles emparejados por edad, sexo y estacionalidad. Uno de los casos fue descartado por mala calidad de la muestra. El estudio final se realizó a 10 casos y 10 controles. En el grupo de casos se encontraron Haemophilus, Moraxella, Streptococcus y Corynebacterium (27,62%, 19,71%, 25,28% y 11,86%, respectivamente). En el grupo control, Haemophilus, Streptococcus, Moraxella y Dolosigranulum (38,59%, 23,71%, 16,08 y 8,93%, respectivamente). Corynebacterium mostró una mayor abundancia en pacientes con EK (11,86% vs. 1,55%; p = 0,004). Conclusiones: Hasta donde sabemos, este es el primer estudio que ha encontrado diferencias en la composición del microbioma respiratorio entre pacientes con EK y controles sanos. Corynebacterium spp. presentó una mayor abundancia en el grupo de EK. Este estudio muestra diferencias en el microbioma entre pacientes y controles, lo que sugiere un papel facilitador del microbioma en el desarrollo de la EK. (AU)


Introduction: The aetiology of Kawasaki disease (KD) remains unknown. Several studies have linked the human microbiome with some diseases. However, there are limited studies on the role of the respiratory microbiome in KD. The aim of our study was to make a more thorough analysis of the causes and processes that increase the susceptibility to KD. Methods: Case-control study comparing the respiratory microbiome of KD patients with that of healthy children. The V3–V4 region of the 16S rRNA bacterial gene and 16 respiratory viruses were analysed by real-time polimerase-chain reaction. We used the Ribosomal Database Project (RDP) version 11.5 (taxonomic assignment). Results: The initial sample included 11 cases and 11 controls matched for age, sex and seasonality. One of the cases was excluded to poor sample quality. The final analysis included 10 cases and 10 controls. In the case group, the analysis detected Haemophilus, Moraxella, Streptococcus and Corynebacterium species (27.62%, 19.71%, 25.28%, 11.86%, respectively). In the control group, it found Haemophilus, Streptococcus, Moraxella, and Dolosigranulum species (38.59%, 23.71%, 16.08, 8.93%, respectively). We found a higher relative abundance of Corynebacterium in patients with KD (11.86% vs. 1.55%; P=.004). Conclusions: To our knowledge, this is the first study that has found differences in the composition of the respiratory microbiome between patients with KD and healthy controls. The relative abundance of Corynebacterium spp. was greater in the KD group. This study shows differences in the microbiome between cases and controls, which suggests that the microbiome may play a role in facilitating the development of KD. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Lactante , Preescolar , Niño , Síndrome Mucocutáneo Linfonodular , Microbiota , Corynebacterium , Estudios de Casos y Controles , Enfermedades Respiratorias , Nasofaringe
4.
An Pediatr (Engl Ed) ; 97(5): 300-309, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241544

RESUMEN

INTRODUCTION: The aetiology of Kawasaki disease (KD) remains unknown. Several studies have linked the human microbiome with some diseases. However, there are limited studies on the role of the respiratory microbiome in KD. The aim of our study was to make a more thorough analysis of the causes and processes that increase the susceptibility to KD. METHODS: Case-control study comparing the respiratory microbiome of KD patients with that of healthy children. The V3-V4 region of the 16S rRNA bacterial gene and 16 respiratory viruses were analysed by real-time polimerase-chain reaction. We used the Ribosomal Database Project (RDP) version 11.5 (taxonomic assignment). RESULTS: The initial sample included 11 cases and 11 controls matched for age, sex and seasonality. One of the cases was excluded to poor sample quality. The final analysis included 10 cases and 10 controls. In the case group, the analysis detected Haemophilus, Moraxella, Streptococcus and Corynebacterium species (27.62%, 19.71%, 25.28%, 11.86%, respectively). In the control group, it found Haemophilus, Streptococcus, Moraxella, and Dolosigranulum species (38.59%, 23.71%, 16.08, 8.93%, respectively). We found a higher relative abundance of Corynebacterium in patients with KD (11.86% vs. 1.55%; P = 0.004). CONCLUSIONS: To our knowledge, this is the first study that has found differences in the composition of the respiratory microbiome between patients with KD and healthy controls. The relative abundance of Corynebacterium spp. was greater in the KD group. This study shows differences in the microbiome between cases and controls, which suggests that the microbiome may play a role in facilitating the development of KD.


Asunto(s)
Microbiota , Síndrome Mucocutáneo Linfonodular , Niño , Humanos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Estudios de Casos y Controles , Nasofaringe/química , Nasofaringe/microbiología , Microbiota/genética , Corynebacterium/genética
5.
Environ Microbiol ; 24(12): 5951-5965, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36057937

RESUMEN

The interactions of parasitic fungi with their phytoplankton hosts in the marine environment are mostly unknown. In this study, we evaluated the diversity of Chytridiomycota in phytoplankton communities dominated by dinoflagellates at several coastal locations in the NW Mediterranean Sea and demonstrated the most prominent interactions of these parasites with their hosts. The protist community in seawater differed from that in sediment, with the latter characterized by a greater heterogeneity of putative hosts, such as dinoflagellates and diatoms, as well as a chytrid community more diverse in its composition and with a higher relative abundance. Chytrids accounted for 77 amplicon sequence variants, of which 70 were found exclusively among different blooming host species. The relative abundance of chytrids was highest in samples dominated by the dinoflagellate genera Ostreopsis and Alexandrium, clearly indicating the presence of specific chytrid communities. The establishment of parasitoid-host co-cultures of chytrids and dinoflagellates allowed the morphological identification and molecular characterization of three species of Chytridiomycota, including Dinomyces arenysensis, as one of the most abundant environmental sequences, and the discovery of two other species not yet described.


Asunto(s)
Quitridiomicetos , Diatomeas , Dinoflagelados , Parásitos , Animales , Dinoflagelados/genética , Dinoflagelados/microbiología , Quitridiomicetos/genética , Fitoplancton/microbiología , Diatomeas/microbiología , Mar Mediterráneo
6.
Foods ; 10(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34441597

RESUMEN

Fresh fruits and vegetables are susceptible to microbial contamination at every stage of the food production chain, and as a potential source of pathogens, irrigation water quality is a critical factor. Next-generation sequencing (NGS) techniques have been flourishing and expanding to a wide variety of fields. However, their application in food safety remains insufficiently explored, and their sensitivity requires improvement. In this study, quantitative polymerase chain reaction (qPCR) assays showed low but frequent contamination of common circulating viral pathogens, which were found in 46.9% of samples of fresh produce: 6/12 lettuce samples, 4/12 strawberries samples, and 5/8 parsley samples. Furthermore, the application of two different NGS approaches, target enrichment sequencing (TES) for detecting viruses that infect vertebrates and amplicon deep sequencing (ADS), revealed a high diversity of viral pathogens, especially Norovirus (NoV) and Human Papillomavirus (HPV), in fresh produce and irrigation water. All NoV and HPV types found in fresh fruit and vegetable samples were also detected in irrigation water sources, indicating that these viruses are common circulating pathogens in the population and that irrigation water may be the most probable source of viral pathogens in food samples.

7.
Mol Ecol ; 30(10): 2417-2433, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756046

RESUMEN

Parasites in aquatic systems are highly diverse and ubiquitous. In marine environments, parasite-host interactions contribute substantially to shaping microbial communities, but their nature and complexity remain poorly understood. In this study, we examined the relationship between Perkinsea parasitoids and bloom-forming dinoflagellate species. Our aim was to determine whether parasite-host species interactions are specific and whether the diversity and distribution of parasitoids are shaped by their dinoflagellate hosts. Several locations along the Catalan coast (NW Mediterranean Sea) were sampled during the blooms of five dinoflagellate species and the diversity of Perkinsea was determined by combining cultivation-based methods with metabarcoding of the V4 region of 18S rDNA. Most known species of Parviluciferaceae, and others not yet described, were detected, some of them coexisting in the same coastal location, and with a wide distribution. The specific parasite-host interactions determined for each of the studied blooms demonstrated the host preferences exhibited by parasitoids in nature. The dominance of a species within the parasitoid community is driven by the presence and abundances of its preferred host(s). The absence of parasitoid species, often associated with a low abundance of their preferred hosts, suggested that high infection rates are reached only under conditions that favour parasitoid propagation, especially dinoflagellate blooms.


Asunto(s)
Alveolados , Dinoflagelados , ADN Ribosómico , Dinoflagelados/genética , Interacciones Huésped-Parásitos , Mar Mediterráneo
8.
Sci Total Environ ; 736: 139573, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32474276

RESUMEN

Fecal pollution of water bodies poses a serious threat for public health and ecosystems. Microbial source tracking (MST) is used to track the source of this pollution facilitating better management of pollution at the source. In this study we tested 12 MST markers to track human, ruminant, sheep, horse, pig and gull pollution to assess their usefulness as an effective management tool of water quality. First, the potential of the selected markers to track the source was evaluated using fresh fecal samples. Subsequently, we evaluated their performance in a catchment with different impacts, considering land use and environmental conditions. All MST markers showed high sensitivity and specificity, although none achieved 100% for both. Although some of the MST markers were detected in hosts other than the intended ones, their abundance in the target group was always several orders of magnitude higher than in the non-target hosts, demonstrating their suitability to distinguish between sources of pollution. The MST analysis matched the land use in the watershed allowing an accurate assessment of the main sources of pollution, in this case mainly human and ruminant pollution. Correlating environmental parameters including temperature and rainfall with MST markers provided insight into the dynamics of the pollution in the catchment. The levels of the human marker showed a significant negative correlation with rainfall in human polluted areas suggesting a dilution of the pollution, whereas at agricultural areas the ruminant marker increased with rainfall. There were no seasonal differences in the levels of human marker, indicating human pollution as a constant pressure throughout the year, whereas the levels of the ruminant marker was influenced by the seasons, being more abundant in summer and autumn. MST analysis integrated with land use and environmental data can improve the management of fecal polluted areas and set up best practice.


Asunto(s)
Ecosistema , Ríos , Animales , Monitoreo del Ambiente , Heces , Caballos , Humanos , Ovinos , Porcinos , Microbiología del Agua , Contaminación del Agua/análisis , Calidad del Agua
9.
Int J Hyg Environ Health ; 224: 113440, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31978735

RESUMEN

Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.


Asunto(s)
Riego Agrícola , Monitoreo del Ambiente , Microbiología del Agua , Criptosporidiosis , Cryptosporidium , Agua Dulce/microbiología , Agua Dulce/parasitología
10.
Sci Total Environ ; 713: 136604, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31955099

RESUMEN

NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing).


Asunto(s)
Aguas del Alcantarillado , Bacteriófagos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Virus
11.
Sci Total Environ ; 645: 1334-1343, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30248857

RESUMEN

In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of many enteric pathogens through direct consumption, agricultural and recreational use. Among the different pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, hepatitis, meningitis, respiratory infections, among others. This study analyzes the presence of viruses in highly impacted surface waters of urban rivers using next-generation sequencing techniques. Three representative locations of urban rivers, receiving the main discharges from Quito sewerage system, were selected. Water samples of 500 mL were concentrated by skimmed-milk flocculation method and the viral nucleic acid was extracted and processed for high throughput sequencing using Illumina MiSeq. The results yielded very relevant data of circulating viruses in the capital of Ecuador. A total of 29 viral families were obtained, of which 26 species were associated with infections in humans. Among the 26 species identified, several were related to gastroenteritis: Human Mastadenovirus F, Bufavirus, Sapporovirus, Norwalk virus and Mamastrovirus 1. Also detected were: Gammapapillomavirus associated with skin infections, Polyomavirus 1 related to cases of kidney damage, Parechovirus A described as cause of neonatal sepsis with neurological affectations and Hepatovirus A, the etiologic agent of Hepatitis A. Other emergent viruses identified, of which its pathogenicity remains to be fully clarified, were: Bocavirus, Circovirus, Aichi Virus and Cosavirus. The wide diversity of species detected through metagenomics gives us key information about the public health risks present in the urban rivers of Quito. In addition, this study describes for the first time the presence of important infectious agents not previously reported in Ecuador and with very little reports in Latin America.


Asunto(s)
Monitoreo del Ambiente , Ríos/virología , Contaminación del Agua/análisis , Ciudades , Ecuador , Humanos , Metagenómica , Contaminación del Agua/estadística & datos numéricos
12.
PLoS One ; 12(1): e0170199, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28099518

RESUMEN

Viral sewage metagenomics is a novel field of study used for surveillance, epidemiological studies, and evaluation of waste water treatment efficiency. In raw sewage human waste is mixed with household, industrial and drainage water, and virus particles are, therefore, only found in low concentrations. This necessitates a step of sample concentration to allow for sensitive virus detection. Additionally, viruses harbor a large diversity of both surface and genome structures, which makes universal viral genomic extraction difficult. Current studies have tackled these challenges in many different ways employing a wide range of viral concentration and extraction procedures. However, there is limited knowledge of the efficacy and inherent biases associated with these methods in respect to viral sewage metagenomics, hampering the development of this field. By the use of next generation sequencing this study aimed to evaluate the efficiency of four commonly applied viral concentrations techniques (precipitation with polyethylene glycol, organic flocculation with skim milk, monolithic adsorption filtration and glass wool filtration) and extraction methods (Nucleospin RNA XS, QIAamp Viral RNA Mini Kit, NucliSENS® miniMAG®, or PowerViral® Environmental RNA/DNA Isolation Kit) to determine the viriome in a sewage sample. We found a significant influence of concentration and extraction protocols on the detected viriome. The viral richness was largest in samples extracted with QIAamp Viral RNA Mini Kit or PowerViral® Environmental RNA/DNA Isolation Kit. Highest viral specificity were found in samples concentrated by precipitation with polyethylene glycol or extracted with Nucleospin RNA XS. Detection of viral pathogens depended on the method used. These results contribute to the understanding of method associated biases, within the field of viral sewage metagenomics, making evaluation of the current literature easier and helping with the design of future studies.


Asunto(s)
Adenoviridae/aislamiento & purificación , ADN Viral/genética , Metagenómica/métodos , ARN Viral/genética , Aguas del Alcantarillado/virología , Siphoviridae/aislamiento & purificación , Adenoviridae/clasificación , Adenoviridae/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Siphoviridae/clasificación , Siphoviridae/genética
13.
J Environ Manage ; 159: 58-67, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26046988

RESUMEN

Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution. Persistent decreases in precipitation during summer can lead to a higher presence of human viruses because river and sea water present the highest viral concentrations during warmer months. In a global context, wastewater management will be the key to preventing environmental dispersion of human faecal pathogens in future climate change scenarios.


Asunto(s)
Heces/virología , Ríos/virología , Contaminación del Agua/prevención & control , Cambio Climático , Heces/microbiología , Floculación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Región Mediterránea , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Estaciones del Año , Agua de Mar/virología , Sensibilidad y Especificidad , España , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/virología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...