Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38605062

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Beta Rhythm/physiology , Movement/physiology
2.
BMJ Neurol Open ; 6(1): e000524, 2024.
Article En | MEDLINE | ID: mdl-38196982

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is a well-established treatment for motor complications in Parkinson's disease (PD). However, its effects on neuropsychiatric symptoms remain disputed. The aim of this study was to evaluate the effects of STN-DBS on neuropsychiatric symptoms in PD. Methods: We retrospectively assessed 26 patients with PD who underwent a preoperative levodopa challenge and postoperative levodopa and stimulation challenges 1 year after STN-DBS. Based on the Neuropsychiatric Fluctuations Scale, Neuropsychiatric State Scores and Neuropsychiatric Fluctuation Indices (NFIs) were calculated. Mixed-effects models with random effects for intercept were used to examine the association of Neuropsychiatric State Score and NFI with the different assessment conditions. Results: In acute challenge conditions, there was an estimated increase of 15.9 points in the Neuropsychiatric State Score in stimulation ON conditions (95% CI 11.4 to 20.6, p<0.001) and 7.6 points in medication ON conditions (95% CI 3.3 to 11.9, p<0.001). Neuropsychiatric fluctuations induced by levodopa, quantified with NFI, decreased by 35.54% (95% CI 49.3 to 21.8, p<0.001) 1 year after STN-DBS. Conclusions: Bilateral STN-DBS at therapeutic parameters has acute psychotropic effects similar to levodopa and can modulate and decrease levodopa-induced neuropsychiatric fluctuations.

3.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Article En | MEDLINE | ID: mdl-38086346

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Deep Brain Stimulation , Mental Disorders , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Quality of Life , Brain , Mental Disorders/therapy , Parkinson Disease/therapy
4.
Clin Neurophysiol ; 152: 43-56, 2023 08.
Article En | MEDLINE | ID: mdl-37285747

OBJECTIVE: Subthalamic nucleus (STN) beta activity (13-30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson's disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. METHODS: STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. RESULTS: The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to âˆ¼ 75% for 1 Hz, to âˆ¼ 40% for 3 Hz deviation). CONCLUSIONS: Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. SIGNIFICANCE: A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Movement/physiology , Cues
5.
Cyborg Bionic Syst ; 4: 0034, 2023.
Article En | MEDLINE | ID: mdl-37266026

Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.

6.
Hum Brain Mapp ; 44(12): 4439-4451, 2023 08 15.
Article En | MEDLINE | ID: mdl-37318767

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Pyramidal Tracts/diagnostic imaging , Prospective Studies , Retrospective Studies
7.
Mov Disord ; 38(6): 937-948, 2023 06.
Article En | MEDLINE | ID: mdl-37148553

Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Neurophysiology
8.
Mov Disord ; 38(5): 818-830, 2023 05.
Article En | MEDLINE | ID: mdl-36987385

BACKGROUND: The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES: The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS: STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS: The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS: The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Basal Ganglia , Parkinson Disease/therapy , Electrodes
9.
Mov Disord Clin Pract ; 10(3): 434-439, 2023 Mar.
Article En | MEDLINE | ID: mdl-36949800

Background: Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods: Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results: On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion: To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.

11.
Neuromodulation ; 26(2): 348-355, 2023 Feb.
Article En | MEDLINE | ID: mdl-35088739

OBJECTIVES: Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS: A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS: Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS: Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Deep Brain Stimulation/methods , Reproducibility of Results , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Software
12.
Neuromodulation ; 26(2): 320-332, 2023 Feb.
Article En | MEDLINE | ID: mdl-35219571

BACKGROUND: Deep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease. OBJECTIVE: In this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold). MATERIALS AND METHODS: STN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature. RESULTS: Both resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction. CONCLUSION: LFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Movement/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Treatment Outcome , Biomarkers
14.
Neurology ; 98(14): 597-600, 2022 04 05.
Article En | MEDLINE | ID: mdl-35145008

We present a case of a cat owner with a scar on his right thenar eminence, followed by lymphadenopathy in the right axilla, general malaise and fever, and subsequent onset of bilateral neuralgic amyotrophy within one week. After a comprehensive workup, cat scratch disease caused by Bartonella henselae was confirmed serologically and adequately treated. Despite antibiotic treatment, the patient presented clinically with persistent bilateral, asymmetric neuropathy of the median nerve, predominantly the interosseous anterior nerve, which was confirmed by multifocal swelling and hyperintense signal of the nerves on T2-weighted MR neurography. Electrophysiological examination confirmed axonal median neuropathies bilaterally. After an unsuccessful steroid treatment trial, the patient showed an excellent and sustained response to intravenous immunoglobulin despite a delay from symptom onset to treatment of 10 months.


Bartonella henselae , Brachial Plexus Neuritis , Cat-Scratch Disease , Animals , Anti-Bacterial Agents/therapeutic use , Brachial Plexus Neuritis/diagnostic imaging , Brachial Plexus Neuritis/drug therapy , Brachial Plexus Neuritis/etiology , Cat-Scratch Disease/complications , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/drug therapy , Cats , Humans , Immunoglobulins
15.
Brain ; 145(1): 237-250, 2022 03 29.
Article En | MEDLINE | ID: mdl-34264308

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Deep Brain Stimulation , Motor Disorders , Parkinson Disease , Subthalamic Nucleus , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Parkinson Disease/complications , Parkinson Disease/drug therapy , Subthalamic Nucleus/physiology
16.
Front Neurosci ; 15: 734186, 2021.
Article En | MEDLINE | ID: mdl-34858126

Closed-loop strategies for deep brain stimulation (DBS) are paving the way for improving the efficacy of existing neuromodulation therapies across neurological disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the delivery of stimulation in the temporal domain. However, clinical and neurophysiological manifestations exhibit highly diverse temporal properties and evolve over multiple time-constants. Moreover, throughout the day, patients are engaged in different activities such as walking, talking, or sleeping that may require specific therapeutic adjustments. This broad range of temporal properties, along with inter-dependencies affecting parallel manifestations, need to be integrated in the development of therapies to achieve a sustained, optimized control of multiple symptoms over time. This requires an extended view on future cl-DBS design. Here we propose a conceptual framework to guide the development of multi-objective therapies embedding parallel control loops. Its modular organization allows to optimize the personalization of cl-DBS therapies to heterogeneous patient profiles. We provide an overview of clinical states and symptoms, as well as putative electrophysiological biomarkers that may be integrated within this structure. This integrative framework may guide future developments and become an integral part of next-generation precision medicine instruments.

17.
Expert Rev Neurother ; 21(12): 1371-1388, 2021 12.
Article En | MEDLINE | ID: mdl-34736368

INTRODUCTION: Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED: Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION: Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.


Deep Brain Stimulation , Parkinson Disease , Wearable Electronic Devices , Basal Ganglia , Humans , Parkinson Disease/drug therapy
18.
Brain Stimul ; 14(5): 1301-1306, 2021.
Article En | MEDLINE | ID: mdl-34428554

BACKGROUND: Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability. OBJECTIVES: Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity. METHODS: Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination. RESULTS: The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination. CONCLUSIONS: Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration.


Brain-Computer Interfaces , Essential Tremor , Algorithms , Artifacts , Electrocardiography , Humans
19.
PLoS Comput Biol ; 17(7): e1009116, 2021 07.
Article En | MEDLINE | ID: mdl-34233347

Parkinson's disease motor symptoms are associated with an increase in subthalamic nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a growing body of evidence suggesting that beta burst duration may be of critical importance to motor symptoms. This makes insights into the dynamics of beta bursting generation valuable, in particular to refine closed-loop deep brain stimulation in Parkinson's disease. In this study, we ask the question "Can average burst duration reveal how dynamics change between the ON and OFF medication states?". Our analysis of local field potentials from the subthalamic nucleus demonstrates using linear surrogates that the system generating beta oscillations is more likely to act in a non-linear regime OFF medication and that the change in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the simplest dynamical changes that could be responsible for changes in the temporal patterning of beta oscillations between medication states by fitting to data biologically inspired models, and simpler beta envelope models. Finally, we show that the non-linearity can be directly extracted from average burst duration profiles under the assumption of constant noise in envelope models. This reveals that average burst duration profiles provide a window into burst dynamics, which may underlie the success of burst duration as a biomarker. In summary, we demonstrate a relationship between average burst duration profiles, dynamics of the system generating beta oscillations, and motor impairment, which puts us in a better position to understand the pathology and improve therapies such as deep brain stimulation.


Beta Rhythm/physiology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiology , Subthalamic Nucleus/physiopathology , Antiparkinson Agents/pharmacology , Beta Rhythm/drug effects , Computational Biology , Humans , Models, Neurological , Subthalamic Nucleus/drug effects
20.
Mov Disord ; 36(9): 2126-2135, 2021 09.
Article En | MEDLINE | ID: mdl-33982824

BACKGROUND: Impulsivity is common in people with Parkinson's disease (PD), with many developing impulsive compulsive behavior disorders (ICB). Its pathophysiological basis remains unclear. OBJECTIVES: We aimed to investigate local field potential (LFP) markers of trait impulsivity in PD and their relationship to ICB. METHODS: We recorded subthalamic nucleus (STN) LFPs in 23 PD patients undergoing deep brain stimulation implantation. Presence and severity of ICB were assessed by clinical interview and the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), whereas trait impulsivity was estimated with the Barratt Impulsivity Scale (BIS-11). Recordings were obtained during the off dopaminergic states and the power spectrum of the subthalamic activity was analyzed using Fourier transform-based techniques. Assessment of each electrode contact localization was done to determine the topography of the oscillatory activity recorded. RESULTS: Patients with (n = 6) and without (n = 17) ICB had similar LFP spectra. A multiple regression model including QUIP-RS, BIS-11, and Unified PD Rating Scale-III scores as regressors showed a significant positive correlation between 8-13 Hz power and BIS-11 score. The correlation was mainly driven by the motor factor of the BIS-11, and was irrespective of the presence or absence of active ICB. Electrode contact pairs with the highest α power, which also correlated most strongly with BIS-11, tended to be more ventral than contact pairs with the highest beta power, which localize to the dorsolateral motor STN. CONCLUSIONS: Our data suggest a link between α power and trait impulsivity in PD, irrespective of the presence and severity of ICB. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Dopamine , Humans , Impulsive Behavior , Parkinson Disease/complications , Parkinson Disease/therapy
...